Quinone-methide species, a gateway to functional molecular systems: from self-immolative dendrimers to long-wavelength fluorescent dyes

Acc Chem Res. 2014 Oct 21;47(10):2970-84. doi: 10.1021/ar500179y. Epub 2014 Sep 2.

Abstract

Over the last 30 years, the quinone-methide elimination has served as a valuable tool for achieving various important molecular functions. Molecular adaptors based on quinone-methide or aza-quinone-methide reactivity have been designed, synthesized, and used in diagnostic probes, molecular amplifiers, drug delivery systems, and self-immolative dendritic/polymeric molecular systems. These unique adaptors function as stable spacers between an enzyme- or reagent-responsive group and a reporter moiety and can undergo 1,4-, 1,6-, or 1,8-type elimination reactions upon cleavage of the triggering group. Such reactivity results in the release of the reporter group through formation of a quinone-methide species. This type of elimination was applied to design distinct molecular adaptors capable of multiple quinone-methide eliminations. Using this chemistry, we have developed unique molecular structures that are known today as self-immolative dendrimers. These dendrimers disassemble upon a single triggering event in a domino-like manner from the focal point to their periphery with the consequent release of multiple end-groups. Such molecular structures are used in self-immolative dendritic prodrugs and in diagnostic probes to obtain a significant amplification effect. To further enhance amplification, we have developed the dendritic chain reaction, which uses simple molecules to achieve functionality of high-generation virtual self-immolative dendrimers. In addition, we harnessed the quinone-methide elimination reactivity to design polymers that disassemble from head-to-tail initiated by an analyte-responsive event. Following this example, other chemical reactivities were demonstrated by scientists to design such polymeric molecules. In a manner analogous to the quinone-methide elimination, electron rearrangement can lead to formation of conjugated quinone-methide-type dyes with long-wavelength emission of fluorescence. We have recently applied an intramolecular charge transfer to form a unique kind of quinone-methide type derivative based on a donor-two-acceptors molecular structure. This intramolecular charge transfer produces a new fluorochrome with an extended conjugation of π-electron system that is used for the design of long-wavelength fluorogenic probes with a turn-ON option. The rapidly expanding use of quinone-methide species, reflected in the increased number of examples reported in the literature, indicates the importance of this tool in chemistry. These species provide a useful gateway to functional molecular structures with distinct reactivities and spectroscopic characteristics.