Sex differences in cardiovascular function during submaximal exercise in humans

Springerplus. 2014 Aug 20;3:445. doi: 10.1186/2193-1801-3-445. eCollection 2014.

Abstract

Differences in cardiovascular function between sexes have been documented at rest and maximal exercise. The purpose of this study was to examine the sex differences in cardiovascular function during submaximal constant-load exercise, which is not well understood. Thirty-one male and 33 female subjects completed nine minutes moderate and nine minutes vigorous intensity submaximal exercise (40 and 75% of peak watts determined by maximal exercise test). Measurements included: intra-arterial blood pressure (SBP and DBP), cardiac index (QI), heart rate (HR), oxygen consumption (VO2) and arterial catecholamines (epinephrine = EPI and norepinephrine = NE), and blood gases. Mean arterial pressure (MAP), stroke volume index (SVI), systemic vascular resistance index (SVRI), arterial oxygen content (CaO2), arterial to venous O2 difference (AVO2) and systemic oxygen transport (SOT) were calculated. At rest and during submaximal exercise QI, SVI, SBP, MAP, NE, CaO2, and SOT were lower in females compared to males. VO2, AVO2, EPI were lower in females throughout exercise. When corrected for wattage, females had a higher Q, HR, SV, VO2 and AVO2 despite lower energy expenditure and higher mechanical efficiency. This study demonstrates sex differences in the cardiovascular response to constant-load submaximal exercise. Specifically, females presented limitations in cardiac performance in which they are unable to compensate for reductions in stroke volume through increases in HR, potentially a consequence of a female's blunted sympathetic response and higher vasodilatory state. Females demonstrated greater cardiac work needed to meet the same external work demand, and relied on increased peripheral oxygen extraction, lower energy expenditure and improvements in mechanical efficiency as compensatory mechanisms.

Keywords: Arterial pressure; Cardiac output; Catecholamines; Energy expenditure; Systemic vascular resistance.