Dynamics of polymer nanoparticles through a single artificial nanopore with a high-aspect-ratio

Soft Matter. 2014 Nov 14;10(42):8413-9. doi: 10.1039/c4sm00392f.

Abstract

The development of nanometric Coulter counters for nanoparticle detection is an attractive and promising field of research. In this work, we have studied the influence of the nanopore surface state on charged polymer nanoparticle translocations. To make this, the translocation of carboxylate modified polystyrene microspheres (diameter 40, 70 and 100 nm) has been investigated through two kinds of high aspect ratio nanopores (negative and uncharged). The latter were tailored by a single track-etched and atomic layer deposition technique. It was shown that the mobility and the energy barrier are strongly dependent on nanopore surface charge. Typically if the latter exhibits negative surface charge, the microsphere mobility increases and the global energy barrier of entrance inside the nanopore decreases with its diameter, converse to the uncharged nanopore.

Publication types

  • Research Support, Non-U.S. Gov't