Persistent cellular motion control and trapping using mechanotactic signaling

PLoS One. 2014 Sep 10;9(9):e105406. doi: 10.1371/journal.pone.0105406. eCollection 2014.

Abstract

Chemotactic signaling and the associated directed cell migration have been extensively studied owing to their importance in emergent processes of cellular aggregation. In contrast, mechanotactic signaling has been relatively overlooked despite its potential for unique ways to artificially signal cells with the aim to effectively gain control over their motile behavior. The possibility of mimicking cellular mechanotactic signals offers a fascinating novel strategy to achieve targeted cell delivery for in vitro tissue growth if proven to be effective with mammalian cells. Using (i) optimal level of extracellular calcium ([Ca(2+)]ext = 3 mM) we found, (ii) controllable fluid shear stress of low magnitude (σ < 0.5 Pa), and (iii) the ability to swiftly reverse flow direction (within one second), we are able to successfully signal Dictyostelium discoideum amoebae and trigger migratory responses with heretofore unreported control and precision. Specifically, we are able to systematically determine the mechanical input signal required to achieve any predetermined sequences of steps including straightforward motion, reversal and trapping. The mechanotactic cellular trapping is achieved for the first time and is associated with a stalling frequency of 0.06 ~ 0.1 Hz for a reversing direction mechanostimulus, above which the cells are effectively trapped while maintaining a high level of directional sensing. The value of this frequency is very close to the stalling frequency recently reported for chemotactic cell trapping [Meier B, et al. (2011) Proc Natl Acad Sci USA 108:11417-11422], suggesting that the limiting factor may be the slowness of the internal chemically-based motility apparatus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calcium / metabolism
  • Cell Movement*
  • Extracellular Space / metabolism
  • Models, Biological*
  • Signal Transduction*

Substances

  • Calcium

Grants and funding

Funding provided by SUTD–MIT International Design Centre (IDC) Grant IDG31400104 (XZ & RB). http://idc.sutd.edu.sg/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.