Topography and areal organization of mouse visual cortex
- PMID: 25209296
- PMCID: PMC4160785
- DOI: 10.1523/JNEUROSCI.1124-14.2014
Topography and areal organization of mouse visual cortex
Abstract
To guide future experiments aimed at understanding the mouse visual system, it is essential that we have a solid handle on the global topography of visual cortical areas. Ideally, the method used to measure cortical topography is objective, robust, and simple enough to guide subsequent targeting of visual areas in each subject. We developed an automated method that uses retinotopic maps of mouse visual cortex obtained with intrinsic signal imaging (Schuett et al., 2002; Kalatsky and Stryker, 2003; Marshel et al., 2011) and applies an algorithm to automatically identify cortical regions that satisfy a set of quantifiable criteria for what constitutes a visual area. This approach facilitated detailed parcellation of mouse visual cortex, delineating nine known areas (primary visual cortex, lateromedial area, anterolateral area, rostrolateral area, anteromedial area, posteromedial area, laterointermediate area, posterior area, and postrhinal area), and revealing two additional areas that have not been previously described as visuotopically mapped in mice (laterolateral anterior area and medial area). Using the topographic maps and defined area boundaries from each animal, we characterized several features of map organization, including variability in area position, area size, visual field coverage, and cortical magnification. We demonstrate that higher areas in mice often have representations that are incomplete or biased toward particular regions of visual space, suggestive of specializations for processing specific types of information about the environment. This work provides a comprehensive description of mouse visuotopic organization and describes essential tools for accurate functional localization of visual areas.
Keywords: extrastriate; imaging; mouse; retinotopy; topography; visual cortex.
Copyright © 2014 the authors 0270-6474/14/3412587-14$15.00/0.
Figures
Similar articles
-
Retinotopic organization of striate and extrastriate visual cortex in the golden hamster (Mesocricetus auratus).Biol Res. 1992;25(2):101-7. Biol Res. 1992. PMID: 1365701
-
Retinotopy of cortical connections between the striate cortex and extrastriate visual areas in the rat.Exp Brain Res. 1993;94(1):1-15. doi: 10.1007/BF00230466. Exp Brain Res. 1993. PMID: 8335065
-
Retinotopic organization of striate and extrastriate visual cortex in the hooded rat.Brain Res. 1983 Aug 1;272(1):137-44. doi: 10.1016/0006-8993(83)90370-0. Brain Res. 1983. PMID: 6616189
-
Human cortical areas underlying the perception of optic flow: brain imaging studies.Int Rev Neurobiol. 2000;44:269-92. doi: 10.1016/s0074-7742(08)60746-1. Int Rev Neurobiol. 2000. PMID: 10605650 Review.
-
Functional analysis of primary visual cortex (V1) in humans.Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):811-7. doi: 10.1073/pnas.95.3.811. Proc Natl Acad Sci U S A. 1998. PMID: 9448245 Free PMC article. Review.
Cited by
-
The logic of recurrent circuits in the primary visual cortex.Nat Neurosci. 2024 Jan;27(1):137-147. doi: 10.1038/s41593-023-01510-5. Epub 2024 Jan 3. Nat Neurosci. 2024. PMID: 38172437 Free PMC article.
-
Mammals Achieve Common Neural Coverage of Visual Scenes Using Distinct Sampling Behaviors.eNeuro. 2024 Feb 9;11(2):ENEURO.0287-23.2023. doi: 10.1523/ENEURO.0287-23.2023. Print 2024 Feb. eNeuro. 2024. PMID: 38164577 Free PMC article.
-
Pan-cortical 2-photon mesoscopic imaging and neurobehavioral alignment in awake, behaving mice.bioRxiv [Preprint]. 2024 Feb 5:2023.10.19.563159. doi: 10.1101/2023.10.19.563159. bioRxiv. 2024. PMID: 37961229 Free PMC article. Preprint.
-
Activity in primate visual cortex is minimally driven by spontaneous movements.Nat Neurosci. 2023 Nov;26(11):1953-1959. doi: 10.1038/s41593-023-01459-5. Epub 2023 Oct 12. Nat Neurosci. 2023. PMID: 37828227 Free PMC article.
-
A parcellation scheme of mouse isocortex based on reversals in connectivity gradients.Netw Neurosci. 2023 Oct 1;7(3):999-1021. doi: 10.1162/netn_a_00312. eCollection 2023. Netw Neurosci. 2023. PMID: 37781146 Free PMC article.
References
-
- Burwell R, Amaral D. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol. 1998;205:179–205. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources