Topography and areal organization of mouse visual cortex
- PMID: 25209296
- PMCID: PMC4160785
- DOI: 10.1523/JNEUROSCI.1124-14.2014
Topography and areal organization of mouse visual cortex
Abstract
To guide future experiments aimed at understanding the mouse visual system, it is essential that we have a solid handle on the global topography of visual cortical areas. Ideally, the method used to measure cortical topography is objective, robust, and simple enough to guide subsequent targeting of visual areas in each subject. We developed an automated method that uses retinotopic maps of mouse visual cortex obtained with intrinsic signal imaging (Schuett et al., 2002; Kalatsky and Stryker, 2003; Marshel et al., 2011) and applies an algorithm to automatically identify cortical regions that satisfy a set of quantifiable criteria for what constitutes a visual area. This approach facilitated detailed parcellation of mouse visual cortex, delineating nine known areas (primary visual cortex, lateromedial area, anterolateral area, rostrolateral area, anteromedial area, posteromedial area, laterointermediate area, posterior area, and postrhinal area), and revealing two additional areas that have not been previously described as visuotopically mapped in mice (laterolateral anterior area and medial area). Using the topographic maps and defined area boundaries from each animal, we characterized several features of map organization, including variability in area position, area size, visual field coverage, and cortical magnification. We demonstrate that higher areas in mice often have representations that are incomplete or biased toward particular regions of visual space, suggestive of specializations for processing specific types of information about the environment. This work provides a comprehensive description of mouse visuotopic organization and describes essential tools for accurate functional localization of visual areas.
Keywords: extrastriate; imaging; mouse; retinotopy; topography; visual cortex.
Copyright © 2014 the authors 0270-6474/14/3412587-14$15.00/0.
Figures
Similar articles
-
Retinotopic organization of striate and extrastriate visual cortex in the golden hamster (Mesocricetus auratus).Biol Res. 1992;25(2):101-7. Biol Res. 1992. PMID: 1365701
-
Retinotopy of cortical connections between the striate cortex and extrastriate visual areas in the rat.Exp Brain Res. 1993;94(1):1-15. doi: 10.1007/BF00230466. Exp Brain Res. 1993. PMID: 8335065
-
Retinotopic organization of striate and extrastriate visual cortex in the hooded rat.Brain Res. 1983 Aug 1;272(1):137-44. doi: 10.1016/0006-8993(83)90370-0. Brain Res. 1983. PMID: 6616189
-
Human cortical areas underlying the perception of optic flow: brain imaging studies.Int Rev Neurobiol. 2000;44:269-92. doi: 10.1016/s0074-7742(08)60746-1. Int Rev Neurobiol. 2000. PMID: 10605650 Review.
-
Parcellating Cerebral Cortex: How Invasive Animal Studies Inform Noninvasive Mapmaking in Humans.Neuron. 2018 Aug 22;99(4):640-663. doi: 10.1016/j.neuron.2018.07.002. Neuron. 2018. PMID: 30138588 Free PMC article. Review.
Cited by
-
Characterizing Cortex-Wide Dynamics with Wide-Field Calcium Imaging.J Neurosci. 2021 May 12;41(19):4160-4168. doi: 10.1523/JNEUROSCI.3003-20.2021. Epub 2021 Apr 23. J Neurosci. 2021. PMID: 33893217 Free PMC article. Review.
-
Registration and Alignment Between in vivo Functional and Cytoarchitectonic Maps of Mouse Visual Cortex.Bio Protoc. 2018 Feb 20;8(4):e2731. doi: 10.21769/BioProtoc.2731. Bio Protoc. 2018. PMID: 29644256 Free PMC article.
-
Effects of Arousal on Mouse Sensory Cortex Depend on Modality.Cell Rep. 2018 Mar 20;22(12):3160-3167. doi: 10.1016/j.celrep.2018.02.092. Cell Rep. 2018. PMID: 29562173 Free PMC article.
-
Cortical Observation by Synchronous Multifocal Optical Sampling Reveals Widespread Population Encoding of Actions.Neuron. 2020 Jul 22;107(2):351-367.e19. doi: 10.1016/j.neuron.2020.04.023. Epub 2020 May 19. Neuron. 2020. PMID: 32433908 Free PMC article.
-
Area-Specific Features of Pyramidal Neurons-a Comparative Study in Mouse and Rhesus Monkey.Cereb Cortex. 2017 Mar 1;27(3):2078-2094. doi: 10.1093/cercor/bhw062. Cereb Cortex. 2017. PMID: 26965903 Free PMC article.
References
-
- Burwell R, Amaral D. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol. 1998;205:179–205. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources