Interactive responses of grass litter decomposition to warming, nitrogen addition and detritivore access in a temperate old field

Oecologia. 2014 Dec;176(4):1151-60. doi: 10.1007/s00442-014-3068-6. Epub 2014 Sep 12.

Abstract

Plant litter decomposition has been studied extensively in the context of both climate warming and increased atmospheric N deposition. However, much of this research is based on microbial responses, despite the potential for detritivores to contribute substantially to litter breakdown. We measured litter mass-loss responses to the combined effects of warming, N addition and detritivore access in a grass-dominated old field. We concurrently assessed the roles of litter treatment origin vs. microenvironment (direct warming and N-addition effects) to elucidate the mechanisms through which these factors affect decomposition. After 6 weeks, mass loss increased in N-addition plots, and it increased with detritivore access in the absence of warming. After 1 year, warming, N addition, and detritivore access all increased litter mass loss, although the effects of N addition and warming were non-additive in the detritivore-access plots. For the litter-origin experiment, mass loss after 6 weeks increased in litter from N-addition plots and warmed plots, but unlike the overall decomposition response, the N-addition effect was enhanced by detritivore access. Conversely, for the microenvironment experiment, detritivore access only increased mass loss in unfertilized plots. After 1 year, detritivore access increased mass loss in the litter-origin and microenvironment experiments, but there were no warming or N-addition effects. Overall, our results provide support for a substantial role of detritivores in promoting litter mass loss in our system. Moreover, they reveal important interactions between litter origin, microclimate and detritivores in determining decomposition responses to global change.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Climate Change*
  • Climate*
  • Ecosystem*
  • Feeding Behavior*
  • Nitrogen / metabolism*
  • Plant Leaves / metabolism*
  • Poaceae / physiology*

Substances

  • Nitrogen