Toxicology of chemically modified graphene-based materials for medical application

Arch Toxicol. 2014 Nov;88(11):1987-2012. doi: 10.1007/s00204-014-1361-0. Epub 2014 Sep 19.

Abstract

This review article aims to provide an overview of chemically modified graphene, and graphene oxide (GO), and their impact on toxicology when present in biological systems. Graphene is one of the most promising nanomaterials due to unique physicochemical properties including enhanced optical, thermal, and electrically conductive behavior in addition to mechanical strength and high surface-to-volume ratio. Graphene-based nanomaterials have received much attention over the last 5 years in the biomedical field ranging from their use as polymeric conduits for nerve regeneration, carriers for targeted drug delivery and in the treatment of cancer via photo-thermal therapy. Both in vitro and in vivo biological studies of graphene-based nanomaterials help understand their relative toxicity and biocompatibility when used for biomedical applications. Several studies investigating important material properties such as surface charge, concentration, shape, size, structural defects, and chemical functional groups relate to their safety profile and influence cyto- and geno-toxicology. In this review, we highlight the most recent studies of graphene-based nanomaterials and outline their unique properties, which determine their interactions under a range of environmental conditions. The advent of graphene technology has led to many promising new opportunities for future applications in the field of electronics, biotechnology, and nanomedicine to aid in the diagnosis and treatment of a variety of debilitating diseases.

Publication types

  • Review

MeSH terms

  • Animals
  • Biotechnology / methods*
  • Drug Delivery Systems
  • Graphite / chemistry*
  • Graphite / toxicity
  • Humans
  • Nanomedicine / methods
  • Nanostructures / chemistry*
  • Nanotechnology
  • Neoplasms / therapy

Substances

  • Graphite