Role of G-quadruplex located at 5' end of mRNAs

Biochim Biophys Acta. 2014 Dec;1840(12):3503-10. doi: 10.1016/j.bbagen.2014.08.017. Epub 2014 Sep 16.

Abstract

Background: Secondary structures in 5' UTR of mRNAs play a critical role in regulating protein synthesis. Though studies have indicated the role of secondary structure G-quadruplex in translational regulation, position-specific effect of G-quadruplex in naturally occurring mRNAs is still not understood. As a pre-initiation complex recognises 5' cap of the mRNA and scans along the untranslated region (UTR) before initiating translation, the presence of G-quadruplex in 5' region may have a significant contribution in regulating translation. Here, we investigate the role of G-quadruplex located at the 5' end of an mRNA.

Methods: Biophysical characterisation of putative G-quadruplexes was performed using UV and CD spectroscopy. Functional implication of G-quadruplex in the context of their location was assessed in cellulo using qRT-PCR and dual luciferase assay system.

Results: PG4 sequences in 5' UTR of AKT interacting protein (AKTIP), cathepsin B (CTSB) and forkhead box E3 (FOXE3) mRNAs form G-quadruplex whereas it is unable to form G-quadruplex in apolipoprotein A-I binding protein (APOA1BP). Our results demonstrated diverse roles of G-quadruplex located at 5' end of mRNAs. Though G-quadruplex in AKTIP and CTSB mRNA act as inhibitory modules, it activates translation in FOXE3 mRNA.

Conclusions: Our works suggests that G-quadruplex present at the 5' terminal of an mRNA behaves differently in a different gene context. It can activate or inhibit gene expression.

General significance: This study demonstrated that it is difficult to predict the role of G-quadruplex on the basis of its position in 5' UTR. The neighbouring nucleotide sequence, the intracellular milieu and the interacting partners might render diverse functions to this secondary structure.

Keywords: AKTIP; APOA1BP; CTSB; FOXE3; G-quadruplex; UTR.