We examine evidence supporting the associations among physical activity (PA), cognitive vitality, neural functioning, and the moderation of these associations by genetic factors. Prospective epidemiological studies provide evidence for PA to be associated with a modest reduction in relative risk of cognitive decline. An evaluation of the PA-cognition link across the life span provides modest support for the effect of PA on preserving and even enhancing cognitive vitality and the associated neural circuitry in older adults, with the majority of benefits seen for tasks that are supported by the prefrontal cortex and the hippocampus. The literature on children and young adults, however, is in need of well-powered randomized controlled trials. Future directions include a more sophisticated understanding of the dose-response relationship, the integration of genetic and epigenetic approaches, inclusion of multimodal imaging of brain-behavior changes, and finally the design of multimodal interventions that may yield broader improvements in cognitive function.
Keywords: cognitive functioning; exercise; life span; neural plasticity; neurogenesis; physical activity.