Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation

J Appl Physiol (1985). 2014 Dec 1;117(11):1308-16. doi: 10.1152/japplphysiol.01395.2013. Epub 2014 Sep 25.

Abstract

Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons.

Keywords: discharge rates; doublets; electromyography; motor unit recruitment order; neuromotor control; recruitment reversal.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Airway Obstruction / physiopathology
  • Animals
  • Diaphragm / physiology*
  • Electromyography
  • Hypoxia / physiopathology
  • Male
  • Motor Activity
  • Rats, Sprague-Dawley
  • Recruitment, Neurophysiological*
  • Respiratory Mechanics*
  • Sneezing