Identification of a novel inhibitor of dengue virus protease through use of a virtual screening drug discovery Web portal

J Chem Inf Model. 2014 Oct 27;54(10):2816-25. doi: 10.1021/ci500531r. Epub 2014 Oct 10.

Abstract

We report the discovery of a novel small-molecule inhibitor of the dengue virus (DENV) protease (NS2B-NS3pro) using a newly constructed Web-based portal (DrugDiscovery@TACC) for structure-based virtual screening. Our drug discovery portal, an extension of virtual screening studies performed using IBM's World Community Grid, facilitated access to supercomputer resources managed by the Texas Advanced Computing Center (TACC) and enabled druglike commercially available small-molecule libraries to be rapidly screened against several high-resolution DENV NS2B-NS3pro crystallographic structures. Detailed analysis of virtual screening docking scores and hydrogen-bonding interactions between each docked ligand and the NS2B-NS3pro Ser135 side chain were used to select molecules for experimental validation. Compounds were ordered from established chemical companies, and compounds with established aqueous solubility were tested for their ability to inhibit DENV NS2B-NS3pro cleavage of a model substrate in kinetic studies. As a proof-of-concept, we validated a small-molecule dihydronaphthalenone hit as a single-digit-micromolar mixed noncompetitive inhibitor of the DENV protease. Since the dihydronaphthalenone was predicted to interact with NS2B-NS3pro residues that are largely conserved between DENV and the related West Nile virus (WNV), we tested this inhibitor against WNV NS2B-NS3pro and observed a similar mixed noncompetitive inhibition mechanism. However, the inhibition constants were ∼10-fold larger against the WNV protease relative to the DENV protease. This novel validated lead had no chemical features or pharmacophores associated with adverse toxicity, carcinogenicity, or mutagenicity risks and thus is attractive for additional characterization and optimization.

MeSH terms

  • Amino Acid Sequence
  • Antiviral Agents / chemistry*
  • Binding Sites
  • Crystallography, X-Ray
  • Dengue Virus / chemistry*
  • Dengue Virus / enzymology
  • Enzyme Inhibitors / chemistry*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Gene Expression
  • High-Throughput Screening Assays
  • Hydrogen Bonding
  • Ligands
  • Molecular Docking Simulation
  • Molecular Dynamics Simulation
  • Molecular Sequence Data
  • Naphthalenes / chemistry*
  • Protein Binding
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Sequence Homology, Nucleic Acid
  • Serine Endopeptidases / chemistry*
  • Serine Endopeptidases / genetics
  • Species Specificity
  • Thermodynamics
  • User-Computer Interface
  • Viral Nonstructural Proteins / antagonists & inhibitors
  • Viral Nonstructural Proteins / chemistry*
  • Viral Nonstructural Proteins / genetics
  • West Nile virus / chemistry
  • West Nile virus / enzymology

Substances

  • Antiviral Agents
  • Enzyme Inhibitors
  • Ligands
  • NS2B protein, flavivirus
  • Naphthalenes
  • Recombinant Proteins
  • Viral Nonstructural Proteins
  • NS3 protease, dengue virus
  • Serine Endopeptidases