PI(4,5)P₂participates directly in priming and possibly in fusion steps of Ca²⁺-triggered vesicle exocytosis. High concentration nanodomains of PI(4,5)P₂reside on the plasma membrane of neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P₂ domains appear to undergo preferential exocytosis in stimulated cells. PI(4,5)P₂directly regulates vesicle exocytosis by recruiting and activating PI(4,5)P₂-binding proteins that regulate SNARE protein function including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These PI(4,5)P₂effector proteins are coincidence detectors that engage in multiple interactions at vesicle exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P₂, which promotes clustering, but an activating role for PI(4,5)P₂in syntaxin-1 function remains to be fully characterized. Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P₂-binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P₂-binding proteins. This article is part of a Special Issue entitled Phosphoinositides.
Keywords: CAPS/CADPS; Munc13; Phosphatidylinositol(4,5)bisphosphate; SNARE protein; Synaptotagmin; Vesicle exocytosis.
Copyright © 2014 Elsevier B.V. All rights reserved.