The clinical antidepressant effect of exogenous agmatine is not reversed by parachlorophenylalanine: a pilot study

Acta Neuropsychiatr. 2013 Apr;25(2):113-8. doi: 10.1111/j.1601-5215.2012.00675.x.

Abstract

Objectives: To examine and record the clinical antidepressant effect of exogenous agmatine, an amino acid derived central glutamaergic modulator in endogenously depressed subjects. It was also the author's intention to examine the effects of parachlorophenylalanine (PCPA) in therapeutic responders to determine if serotonergic mechanisms mediate agmatine's antidepressant effect. Methodology Exogenous agmatine was ingested in doses of 2-3mg/day by depressed subjects with Major Depresssive Disorder (MDD), clinically assessed using the 21 item Hamilton Rating Scale for Depression (HAM-D), the Clinical Global Impression (CGI) and the Brief Psychiatric Rating Scale (BPRS). Antidepressant responders volunteered to concommittantly ingest parachlorophenylalanine (PCPA) at starting doses of 250mg/day, and increased until depressive relapse, mitigating side effects, or a maximum dosage of 1250mg/day.

Results: Three depressed subjects showing total illness remission with exogenous agmatine did not relapse after concomitantly adding PCPA. Effective in relieving both psychomotor agitation and retardation, the antidepressant effect was free of physical or behavioural side effects: gastrointestinal discomfort and loose stools in one subject resolved spontaneously within days. All three subjects refused to risk depressive relapse by temporarily stopping agmatine after PCPA was stopped.

Conclusion: The antidepressant effect of exogenous agmatine was documented in a small number of MDD subjects, and was not reversed/modified by PCPA confirming findings in animals that therapeutic response is not mediated by serotonergic mechanisms. A NAMDA (N-methyl-D-aspartate) receptor antagonist, agmatine's recognized function in brain as inhibitory modulator of excitatory glutamatergic transmission suggests a pivotal role for brain glutamate, contributing to the ripening glutamatergic basis of depression, and a rational basis for future antidepressant pharmacotherapy.