Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy
- PMID: 25291544
- PMCID: PMC4212799
- DOI: 10.1021/nn505051d
Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy
Abstract
A class of biocompatible upconverting nanoparticles (UCNPs) with largely amplified red-emissions was developed. The optimal UCNP shows a high absolute upconversion quantum yield of 3.2% in red-emission, which is 15-fold stronger than the known optimal β-phase core/shell UCNPs. When conjugated to aminolevulinic acid, a clinically used photodynamic therapy (PDT) prodrug, significant PDT effect in tumor was demonstrated in a deep-tissue (>1.2 cm) setting in vivo at a biocompatible laser power density. Furthermore, we show that our UCNP-PDT system with NIR irradiation outperforms clinically used red light irradiation in a deep tumor setting in vivo. This study marks a major step forward in photodynamic therapy utilizing UCNPs to effectively access deep-set tumors. It also provides an opportunity for the wide application of upconverting red radiation in photonics and biophotonics.
Keywords: nanoparticles; photodynamic therapy; prodrug; red-emission; upconverting.
Figures
Similar articles
-
Highly Red Light-Emitting Erbium- and Lutetium-Doped Core-Shell Upconverting Nanoparticles Surface-Modified with PEG-Folic Acid/TCPP for Suppressing Cervical Cancer HeLa Cells.Pharmaceutics. 2020 Nov 17;12(11):1102. doi: 10.3390/pharmaceutics12111102. Pharmaceutics. 2020. PMID: 33212942 Free PMC article.
-
Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles.Acta Biomater. 2017 Mar 15;51:461-470. doi: 10.1016/j.actbio.2017.01.004. Epub 2017 Jan 4. Acta Biomater. 2017. PMID: 28063989
-
Photosensitiser functionalised luminescent upconverting nanoparticles for efficient photodynamic therapy of breast cancer cells.Photochem Photobiol Sci. 2019 Jan 1;18(1):98-109. doi: 10.1039/c8pp00354h. Epub 2018 Oct 17. Photochem Photobiol Sci. 2019. PMID: 30328457
-
Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics.Theranostics. 2013 Mar 25;3(5):317-30. doi: 10.7150/thno.5284. Print 2013. Theranostics. 2013. PMID: 23650479 Free PMC article. Review.
-
Recent Progress in Upconversion Photodynamic Therapy.Nanomaterials (Basel). 2018 May 18;8(5):344. doi: 10.3390/nano8050344. Nanomaterials (Basel). 2018. PMID: 29783654 Free PMC article. Review.
Cited by
-
Illuminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials.ACS Nano. 2016 Apr 26;10(4):3881-3885. doi: 10.1021/acsnano.6b02284. Epub 2016 Apr 14. ACS Nano. 2016. PMID: 27077481 Free PMC article.
-
Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors.Nat Commun. 2018 Aug 20;9(1):3334. doi: 10.1038/s41467-018-05798-x. Nat Commun. 2018. PMID: 30127408 Free PMC article.
-
Manipulating energy transfer in lanthanide-doped single nanoparticles for highly enhanced upconverting luminescence.Chem Sci. 2017 Jul 1;8(7):5050-5056. doi: 10.1039/c7sc01393k. Epub 2017 Apr 21. Chem Sci. 2017. PMID: 29568476 Free PMC article.
-
Low power threshold photochemical upconversion using a zirconium(iv) LMCT photosensitizer.Chem Sci. 2021 Jun 2;12(26):9069-9077. doi: 10.1039/d1sc01662h. eCollection 2021 Jul 7. Chem Sci. 2021. PMID: 34276936 Free PMC article.
-
Enhancing Combined Immunotherapy and Radiotherapy through Nanomedicine.Bioconjug Chem. 2020 Dec 16;31(12):2668-2678. doi: 10.1021/acs.bioconjchem.0c00520. Epub 2020 Nov 30. Bioconjug Chem. 2020. PMID: 33251789 Free PMC article. Review.
References
-
- Chatterjee D. K.; Fong L. S.; Zhang Y. Nanoparticles in Photodynamic Therapy: An Emerging Paradigm. Adv. Drug Delivery Rev. 2008, 60, 1627–1637. - PubMed
-
- Dolmans D. E. J. G. J.; Fukumura D.; Jain R. K. Photodynamic Therapy for Cancer. Nat. Rev. Cancer 2003, 3, 380–387. - PubMed
-
- Lovell J. F.; Liu T. W. B.; Chen J.; Zheng G. Activatable Photosensitizers for Imaging and Therapy. Chem. Rev. 2010, 110, 2839–2857. - PubMed
-
- Macdonald I. J.; Dougherty T. J. Basic Principles of Photodynamic Therapy. J. Porphyrins Phthalocyanines 2001, 5, 105–129.
-
- Borgatti-Jeffreys A.; Hooser S. B.; Miller M. A.; Lucroy M. D. Phase I Clinical Trial of the Use of Zinc Phthalocyanine Tetrasulfonate as a Photosensitizer for Photodynamic Therapy in Dogs. Am. J. Vet. Res. 2007, 68, 399–404. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
