Feedback induction of a photoreceptor-specific isoform of retinoid-related orphan nuclear receptor β by the rod transcription factor NRL
- PMID: 25296752
- PMCID: PMC4239602
- DOI: 10.1074/jbc.M114.605774
Feedback induction of a photoreceptor-specific isoform of retinoid-related orphan nuclear receptor β by the rod transcription factor NRL
Abstract
Vision requires the generation of cone and rod photoreceptors that function in daylight and dim light, respectively. The neural retina leucine zipper factor (NRL) transcription factor critically controls photoreceptor fates as it stimulates rod differentiation and suppresses cone differentiation. However, the controls over NRL induction that balance rod and cone fates remain unclear. We have reported previously that the retinoid-related orphan receptor β gene (Rorb) is required for Nrl expression and other retinal functions. We show that Rorb differentially expresses two isoforms: RORβ2 in photoreceptors and RORβ1 in photoreceptors, progenitor cells, and other cell types. Deletion of RORβ2 or RORβ1 increased the cone:rod ratio ∼2-fold, whereas deletion of both isoforms in Rorb(-/-) mice produced almost exclusively cone-like cells at the expense of rods, suggesting that both isoforms induce Nrl. Electroporation of either RORβ isoform into retinal explants from Rorb(-/-) neonates reactivated Nrl and rod genes but, in Nrl(-/-) explants, failed to reactivate rod genes, indicating that NRL is the effector for both RORβ isoforms in rod differentiation. Unexpectedly, RORβ2 expression was lost in Nrl(-/-) mice. Moreover, NRL activated the RORβ2-specific promoter of Rorb, indicating that NRL activates Rorb, its own inducer gene. We suggest that feedback activation between Nrl and Rorb genes reinforces the commitment to rod differentiation.
Keywords: Cell Differentiation; Neurodevelopment; Photoreceptor; Retina; Transcription Factor.
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Figures
Similar articles
-
Combinatorial regulation of photoreceptor differentiation factor, neural retina leucine zipper gene NRL, revealed by in vivo promoter analysis.J Biol Chem. 2011 Aug 12;286(32):28247-55. doi: 10.1074/jbc.M111.257246. Epub 2011 Jun 14. J Biol Chem. 2011. PMID: 21673114 Free PMC article.
-
Retinoid-related orphan nuclear receptor RORbeta is an early-acting factor in rod photoreceptor development.Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17534-9. doi: 10.1073/pnas.0902425106. Epub 2009 Sep 24. Proc Natl Acad Sci U S A. 2009. PMID: 19805139 Free PMC article.
-
Two transcription factors can direct three photoreceptor outcomes from rod precursor cells in mouse retinal development.J Neurosci. 2011 Aug 3;31(31):11118-25. doi: 10.1523/JNEUROSCI.1709-11.2011. J Neurosci. 2011. PMID: 21813673 Free PMC article.
-
Regulation of photoreceptor gene expression by Crx-associated transcription factor network.Brain Res. 2008 Feb 4;1192:114-33. doi: 10.1016/j.brainres.2007.06.036. Epub 2007 Jun 30. Brain Res. 2008. PMID: 17662965 Free PMC article. Review.
-
Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3): Role in Retinal Development and Disease.Genes (Basel). 2023 Jun 23;14(7):1325. doi: 10.3390/genes14071325. Genes (Basel). 2023. PMID: 37510230 Free PMC article. Review.
Cited by
-
Patterning and Development of Photoreceptors in the Human Retina.Front Cell Dev Biol. 2022 Apr 14;10:878350. doi: 10.3389/fcell.2022.878350. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 35493094 Free PMC article. Review.
-
Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective.Genes (Basel). 2019 Nov 29;10(12):987. doi: 10.3390/genes10120987. Genes (Basel). 2019. PMID: 31795518 Free PMC article. Review.
-
Notch Signaling-Induced Oscillatory Gene Expression May Drive Neurogenesis in the Developing Retina.Front Mol Neurosci. 2019 Sep 19;12:226. doi: 10.3389/fnmol.2019.00226. eCollection 2019. Front Mol Neurosci. 2019. PMID: 31607861 Free PMC article.
-
A quantitative transcriptomic analysis of the physiological significance of mTOR signaling in goat fetal fibroblasts.BMC Genomics. 2016 Nov 7;17(1):879. doi: 10.1186/s12864-016-3151-y. BMC Genomics. 2016. PMID: 27821074 Free PMC article.
-
International Union of Basic and Clinical Pharmacology CXIII: Nuclear Receptor Superfamily-Update 2023.Pharmacol Rev. 2023 Nov;75(6):1233-1318. doi: 10.1124/pharmrev.121.000436. Epub 2023 Aug 16. Pharmacol Rev. 2023. PMID: 37586884 Free PMC article. Review.
References
-
- Nathans J. (1999) The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron 24, 299–312 - PubMed
-
- Carter-Dawson L. D., LaVail M. M. (1979) Rods and cones in the mouse retina. II. Autoradiographic analysis of cell generation using tritiated thymidine. J. Comp. Neurol. 188, 263–272 - PubMed
-
- Young R. W. (1985) Cell differentiation in the retina of the mouse. Anat. Rec. 212, 199–205 - PubMed
-
- Brzezinski J., Reh T. A. (2010) Encyclopedia of the Eye, pp. 73–80, Elsevier, Amsterdam
-
- Livesey F. J., Cepko C. L. (2001) Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2, 109–118 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
