Competency of different cell models to predict human hepatotoxic drugs

Expert Opin Drug Metab Toxicol. 2014 Nov;10(11):1553-68. doi: 10.1517/17425255.2014.967680. Epub 2014 Oct 9.


Introduction: The liver is the most important target for drug-induced toxicity. This vulnerability results from functional liver features and its role in the metabolic elimination of most drugs. Drug-induced liver injury is a significant leading cause of acute, chronic liver disease and an important safety issue when developing new drugs.

Areas covered: This review describes the advantages and limitations of hepatic cell-based models for early safety risk assessment during drug development. These models include hepatocytes cultured as monolayer, collagen-sandwich; emerging complex 3D configuration; liver-derived cell lines; stem cell-derived hepatocytes.

Expert opinion: In vitro toxicity assays performed in hepatocytes or hepatoma cell lines can potentially provide rapid and cost-effective early feedback to identify toxic candidates for compound prioritization. However, their capacity to predict hepatotoxicity depends critically on cells' functional performance. In an attempt to improve and prolong functional properties of cultured cells, different strategies to recreate the in vivo hepatocyte environment have been explored. 3D cultures, co-cultures of hepatocytes with other cell types and microfluidic devices seem highly promising for toxicological studies. Moreover, hepatocytes derived from human pluripotent stem cells are emerging cell-based systems that may provide a stable source of hepatocytes to reliably screen metabolism and toxicity of candidate compounds.

Keywords: CYP-engineered cell line; co-culture; hepatocytes; hepatoma cell line; microfluidic device; sandwich culture; scaffold-based culture; spheroids.

Publication types

  • Review

MeSH terms

  • Animals
  • Cell Line
  • Cell Line, Tumor
  • Cells, Cultured
  • Chemical and Drug Induced Liver Injury / physiopathology*
  • Hepatocytes / drug effects
  • Hepatocytes / pathology
  • Humans
  • Liver / cytology
  • Liver / drug effects*
  • Liver / pathology
  • Toxicity Tests / methods*