Train the Brain: Novel Electroencephalography Data Indicate Links between Motor Learning and Brain Adaptations

J Nov Physiother. 2014 Apr;4(2):198. doi: 10.4172/2165-7025.1000198.

Abstract

EEG differences were examined between part and whole practice in the learning of a novel motor task. Recording was done at 4 sites (i.e., O1, O2, C3, and C4) on 30 participants who performed a novel mirror star tracer task. Individuals were randomly assigned to 3 groups: whole practice, part practice, and control (no practice). Whole practice is defined as practicing a skill in its entirety. Part practice is defined as practicing separate, independent parts of the skill, and gradually combining those parts with parts that are dependent on one another. Each group was assessed during a pretest and posttest. EEG data was analyzed using a 2×2×2×3 (trials×hemisphere×site×practice) repeated measures mixed model ANOVA for each of the wave bands (lower alpha, upper alpha, lower beta, upper beta). All participants performed the task faster as no practice effect was found across the three groups; however the part practice group exhibited a significant decrease in errors. Reduced activation in the occipital and central sites was observed for lower alpha in the posttest compared to the pretest, for all participants. Hemispheric differences were present for all wavebands, with greater activation in the left hemisphere independent of practice type. The results of our study indicate that task learning was likely associated with the observed changes in the lower alpha waveband. Further, a concomitant behavior between the hemispheric lateralization of alpha and beta waveforms was observed. These results have implications for athlete training and rehabilitation. They indicate the utility of EEG for learning assessment in athletes. They also indicate learning strategies with a partial movement focus may be a beneficial strategy to support the development of complex sport skills training and rehabilitation strategies focused on reacquisition of skills prior to sport reintegration.

Keywords: EEG; Learning; Neuromuscular training; Practice; Sport performance.