Short communication: Viremic control is independent of repeated low-dose SHIVSF162p3 exposures

AIDS Res Hum Retroviruses. 2014 Nov;30(11):1125-9. doi: 10.1089/aid.2014.0238. Epub 2014 Oct 14.

Abstract

The repeat low-dose virus challenge model is commonly used in nonhuman primate studies of HIV transmission and biomedical preventions. For some viruses or challenge routes, it is uncertain whether the repeated exposure design might induce virus-directed innate or adaptive immunity that could affect infection or viremic outcomes. Retrospective cohorts of male Indian rhesus (n=40) and female pigtail (n=46) macaques enrolled in repeat low-dose rectal or vaginal SHIV(SF162p3) challenge studies, respectively, were studied to compare the relationship between the number of previous exposures and peak plasma SHIV RNA levels or viral load area under the curve (AUC), surrogate markers of viral control. Repeated mucosal exposures of 10 or 50 TCID50 of virus for rectal and vaginal exposures, respectively, were performed. Virus levels were measured by quantitative reverse-transcriptase real-time PCR. The cumulative number of SHIV(SF162p3) exposures did not correlate with observed peak virus levels or with AUC in rectally challenged rhesus macaques [peak: rho (ρ)=0.04, p=0.8; AUC: ρ=0.33, p=0.06] or vaginally challenged pigtail macaques (peak: ρ=-0.09, p=0.7; AUC: ρ=0.11, p=0.6). Infections in these models occur independently of exposure history and provide assurance that neither inoculation route nor number of exposures required for infection correlates with postinfection viremia. These data also indicate that both the vaginal and rectal repeated low-dose virus exposure models using SHIV(SF162p3) provide a reliable system for nonhuman primate studies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cohort Studies
  • Disease Models, Animal
  • Female
  • HIV / immunology*
  • Macaca mulatta
  • Macaca nemestrina
  • Male
  • RNA, Viral / blood
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • Simian Acquired Immunodeficiency Syndrome / immunology*
  • Simian Acquired Immunodeficiency Syndrome / virology*
  • Simian Immunodeficiency Virus / immunology*
  • Viral Load*

Substances

  • RNA, Viral