Hydroxyethyl starch 130/0.4 decreases inflammation, neutrophil recruitment, and neutrophil extracellular trap formation

Br J Anaesth. 2015 Mar;114(3):509-19. doi: 10.1093/bja/aeu340. Epub 2014 Oct 16.

Abstract

Background: During systemic inflammation, leucocytes are activated and extravasate into damaged tissue. Activation and recruitment are influenced by different mechanisms, including the interaction of leucocytes with platelets and neutrophil extracellular traps (NET) formation. Here, we investigated the molecular mechanism by which hydroxyethyl starch (HES 130/0.4) dampens systemic inflammation in vivo.

Methods: Systemic inflammation was induced in C57Bl/6 wild-type mice by caecal ligation and puncture and cytokine concentrations in the blood, neutrophil recruitment, platelet-neutrophil aggregates, and NET formation were investigated in vivo. Intravascular adherent and transmigrated neutrophils were analysed by intravital microscopy (IVM) of the cremaster muscle and the kidneys. Flow chamber assays were used to investigate the different steps of the leucocyte recruitment cascade.

Results: By using flow cytometry, we demonstrated that HES 130/0.4 reduces neutrophil recruitment into the lung, liver, and kidneys during systemic inflammation (n=8 mice per group). IVM revealed a reduced number of adherent and transmigrated neutrophils in the cremaster and kidney after HES 130/0.4 administration (n=8 mice per group). Flow chamber experiments showed that HES 130/0.4 significantly reduced chemokine-induced neutrophil arrest (n=4 mice per group). Furthermore, HES 130/0.4 significantly reduced the formation of platelet-neutrophil aggregates, and NET formation during systemic inflammation (n=8 mice per group).

Conclusions: Our findings suggest that HES 130/0.4 significantly reduces neutrophil-platelet aggregates, NET formation, chemokine-induced arrest, and transmigration of neutrophils under inflammatory conditions.

Keywords: HES 130/0.4; inflammation; leucocyte; neutrophil extracellular traps; platelet.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal
  • Extracellular Traps / drug effects*
  • Flow Cytometry / methods
  • Hydroxyethyl Starch Derivatives / pharmacology*
  • Inflammation / immunology
  • Inflammation / prevention & control*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Neutrophil Infiltration / drug effects*
  • Neutrophil Infiltration / immunology
  • Plasma Substitutes / pharmacology*

Substances

  • HES 130-0.4
  • Hydroxyethyl Starch Derivatives
  • Plasma Substitutes