Recent studies have demonstrated that prestimulus alpha-band activity substantially influences perception of near-threshold stimuli. Here, we studied the influence of prestimulus alpha power fluctuations on temporal perceptual discrimination of suprathreshold tactile stimuli and subjects' confidence regarding their perceptual decisions. We investigated how prestimulus alpha-band power influences poststimulus decision-making variables. We presented electrical stimuli with different stimulus onset asynchronies (SOAs) to human subjects, and determined the SOA for which temporal perceptual discrimination varied on a trial-by-trial basis between perceiving 1 or 2 stimuli, prior to recording brain activity with magnetoencephalography. We found that low prestimulus alpha power in contralateral somatosensory and occipital areas predicts the veridical temporal perceptual discrimination of 2 stimuli. Additionally, prestimulus alpha power was negatively correlated with confidence ratings in correctly perceived trials, but positively correlated for incorrectly perceived trials. Finally, poststimulus event-related fields (ERFs) were modulated by prestimulus alpha power and reflect the result of a decisional process rather than physical stimulus parameters around ∼150 ms. These findings provide new insights into the link between spontaneous prestimulus alpha power fluctuations, temporal perceptual discrimination, decision making, and decisional confidence. The results suggest that prestimulus alpha power modulates perception and decisions on a continuous scale, as reflected in confidence ratings.
Keywords: MEG; alpha oscillations; perceptual decision making; prestimulus fluctuations; tactile stimulation.
© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.