Nonvolatile optically-erased colloidal memristors

Nanoscale. 2015 Jan 28;7(4):1270-9. doi: 10.1039/c4nr05167j.


A nonconjugated methacrylate terpolymer containing carbazole moieties (electron donors), 1,3,4-oxadiazole moieties (electron acceptors), and Coumarin-6 in the pendant groups was synthesized via free radical copolymerization of methacrylate monomers containing the respective functional groups. The terpolymer was formed into 57 nm particles through a mini-emulsion route. For a thin 100 nm film of the fused particles sandwiched between an indium-tin oxide (ITO) electrode and an Al electrode, the structure behaved as a nonvolatile flash (rewritable) memory with accessible electronic states that could be written, read, and optically erased. The device exhibited a turn-on voltage of ca. -4.5 VDC and a 10(6) current ratio. A device in the ON high conductance state could be reverted to the OFF state with a short exposure to a 360 nm light source. The development of semiconducting colloidal inks that can be converted into electroactive devices through a continuous processing method is a critical step in the widespread adoption of these 2D manufacturing technologies for printed electronics.

Publication types

  • Research Support, Non-U.S. Gov't