Comparison of total and segmental body composition using DXA and multifrequency bioimpedance in collegiate female athletes

J Strength Cond Res. 2015 Apr;29(4):918-25. doi: 10.1519/JSC.0000000000000732.


The purpose of this investigation was to determine the agreement between multifrequency bioelectrical impedance analysis (BIA) and dual-energy x-ray absorptiometry (DXA) for measuring body fat percentage (BF%), fat-free mass (FFM), and total body and segmental lean soft tissue (LST) in collegiate female athletes. Forty-five female athletes (age = 21.2 ± 2.0 years, height = 166.1 ± 7.1 cm, weight = 62.6 ± 9.9 kg) participated in this study. Variables measured through BIA and DXA were as follows: BF%, FFM, and LST of the arms (ARMS(LST)), the legs (LEGS(LST)), the trunk (TRUNK(LST)), and the total body (TOTAL(LST)). Compared with the DXA, the InBody 720 provided significantly lower values for BF% (-3.3%, p < 0.001) and significantly higher values for FFM (2.1 kg, p < 0.001) with limits of agreement (1.96 SD of the mean difference) of ±5.6% for BF% and ±3.7 kg for FFM. No significant differences (p < 0.008) existed between the 2 devices (InBody 720-DXA) for ARMS(LST) (0.05 kg), TRUNK(LST) (0.14 kg), LEGS(LST) (-0.4 kg), and TOTAL(LST) (-0.21 kg). The limits of agreement were ±0.79 kg for ARMS(LST), ±2.62 kg for LEGS(LST), ±3.18 kg for TRUNK(LST), and ±4.23 kg for TOTAL(LST). This study found discrepancies in BF% and FFM between the 2 devices. However, the InBody 720 and DXA appeared to provide excellent agreement for measuring total body and segmental LST. Therefore, the InBody 720 may be a rapid noninvasive method to assess LST in female athletes when DXA is not available.

Publication types

  • Comparative Study

MeSH terms

  • Absorptiometry, Photon*
  • Adipose Tissue / anatomy & histology
  • Adiposity*
  • Arm
  • Electric Impedance*
  • Female
  • Humans
  • Leg
  • Torso
  • Young Adult