Fabrication and characterisation of an electrospun tubular 3D scaffold platform of poly(vinylidene fluoride-co-hexafluoropropylene) for small-diameter blood vessel application

J Biomater Sci Polym Ed. 2014;25(18):2023-41. doi: 10.1080/09205063.2014.968018. Epub 2014 Oct 31.

Abstract

In this research, nanofibrous 3D tubular (~4-mm-diameter tube) scaffolds of poly (vinylidene fluoride-co-hexafluoropropylene) were fabricated by electrospinning. The role of surface charge in the success of these scaffolds for potential small-diameter artificial vascular grafts has been investigated using streaming potential study. Prior to endothelial cell culture, surface properties such as wettability and the surface charge of these tubular scaffolds were evaluated using unmodified and fibrinogen-adsorbed surfaces to understand their interaction with surrounding environment. The tubular scaffolds constructed using electrospinning show similar mechanical properties such as tensile strength and elastic modulus as those of native vessels. Whilst endothelial cell proliferation on unmodified tubes, as analysed by scanning electron microscopy, was found to be moderate, a simple process of dynamic fibrinogen adsorption was seen to enhance the endothelialisation of these tubular grafts. The high negative zeta potential values, high strength, robustness and structural reliability of the scaffolds represent them to be promising biomaterials for vascular graft applications.

Keywords: SEM; electrospinning; fibres; platelets; poly(vinylidene fluoride-co-hexafluoropropylene); vascular graft; zeta potential.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Biocompatible Materials / chemistry*
  • Biocompatible Materials / pharmacology
  • Blood Vessel Prosthesis*
  • Cell Adhesion / drug effects
  • Electricity*
  • Endothelial Cells / cytology
  • Endothelial Cells / drug effects
  • Feasibility Studies
  • Fibrinogen / chemistry
  • Humans
  • Mechanical Phenomena
  • Nanofibers / chemistry*
  • Nanotechnology*
  • Polyvinyls / chemistry*
  • Polyvinyls / pharmacology
  • Solvents / chemistry
  • Tissue Scaffolds / chemistry*

Substances

  • Biocompatible Materials
  • Polyvinyls
  • Solvents
  • poly(vinylidene fluoride-co-hexafluoro propylene)
  • Fibrinogen