Detailed formation processes of stable dislocations in graphene

Nanoscale. 2014 Dec 21;6(24):14836-44. doi: 10.1039/c4nr04718d. Epub 2014 Oct 31.

Abstract

We use time-dependent HRTEM to reveal that stable dislocation pairs in graphene are formed from an initial complex multi-vacancy cluster that undergoes multiple bond rotations and adatom incorporation. In the process, it is found that the transformation from the formed complex multi-vacancy cluster can proceed without the increase of vacancy because many atoms and dimers are not only evaporated but also actively adsorbed. In tight-binding molecular dynamics simulations, it is confirmed that adatoms play an important role in the reconstruction of non-hexagonal rings into hexagonal rings. From density functional theory calculations, it is also found from simulations that there is a favorable distance between two dislocations pointing away from each other (i.e. formed from atom loss). For dislocation pairs pointing away from each other, the hillock-basin structure is more stable than the hillock-hillock structure for dislocation pairs pointing away from each other (i.e. formed from atom loss).

Publication types

  • Research Support, Non-U.S. Gov't