Role of metalloproteinases in tendon pathophysiology

Mini Rev Med Chem. 2014;14(12):978-87. doi: 10.2174/1389557514666141106132411.

Abstract

Tendons play a crucial role in musculoskeletal functioning because they physically connect bones and muscles making the movement of articular joints possible. The molecular composition of tendons mostly include collagen I fibrils, which aggregate together to form fibers to form a fascicle. A complex network composed of resident cells (i.e., tenocytes) and extracellular matrix macromolecules (glycosaminoglycans, proteoglycans, glycoproteins and other non collagenous proteins) interact and define the structure of tendons and their properties. Development, renewal and remodeling of tendons composition occur at all ages of living organisms so the homeostasis of proteolytic systems is a critical issue. A major role is played by Metalloproteinases, a family of Zn(2+)-dependent endopeptidases involved in the catabolism of several components of the extracellular matrix, such as collagens, proteoglycans, fibronectin and many others. Among these, two main classes are mostly involved in tendon pathophysiology, namely the Matrix Metalloproteinases (MMPs) and a Disintegrin-like and Metalloproteinase domain with Thrombospondin motifs (ADAMTSs). This study analyses the various aspects of the roles played by Metalloproteinases in the physiological and pathological processes of tendons.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • ADAM Proteins / analysis
  • ADAM Proteins / metabolism*
  • Animals
  • Humans
  • Matrix Metalloproteinases / analysis
  • Matrix Metalloproteinases / metabolism*
  • Models, Molecular
  • Protein Conformation
  • Tendons / enzymology*
  • Tendons / pathology
  • Tendons / physiopathology*
  • Tendons / ultrastructure

Substances

  • ADAM Proteins
  • Matrix Metalloproteinases