Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Mar 6;1010(3):346-51.
doi: 10.1016/0167-4889(89)90060-8.

Stimulatory effects of atrial natriuretic factor on phosphoinositide hydrolysis in cultured bovine aortic smooth muscle cells

Affiliations

Stimulatory effects of atrial natriuretic factor on phosphoinositide hydrolysis in cultured bovine aortic smooth muscle cells

M Hirata et al. Biochim Biophys Acta. .

Abstract

The effects of atrial natriuretic factor (ANF) on phosphoinositide hydrolysis were examined in preparations of cultured bovine aortic smooth muscle cells. In homogenates or particulate fractions from cultured bovine aortic smooth muscle cells, ANF and atriopeptin I increased the formation of inositol phosphates and GTPase activity. The effects on inositol phosphates were markedly enhanced with guanosine 5'[gamma-thio]triphosphate. Both atrial peptides also stimulated the formation of diacylglycerol in intact cultured cells. In these experiments, atriopeptin I was about 10-fold more potent than ANF. These studies indicate that atrial peptides have stimulatory effects on phosphoinositide hydrolysis which are mediated through a guanine nucleotide regulatory protein. The greater potency of atriopeptin I on GTPase activity and the accumulation of inositol phosphates suggests that the nonguanylate cyclase-coupled receptor for ANF (ANF-R2) mediates the stimulatory effects of ANF on phosphoinositide hydrolysis through a guanine nucleotide regulatory protein.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources