Periostin Expression is Altered in Aortic Valves in Smad6 Mutant Mice

J Neonatal Biol. 2012 Jan 21:1:4692. doi: 10.4172/2167-0897.1000101.


Smad6 is known to predominantly inhibit BMP signaling by negatively regulating the BMP signaling process. Therefore, Smad6 mutation potentially provides an important genetic model for investigating the role of BMP signaling in vivo. Periostin is a 90-kDA secreted extracellular matrix (ECM) protein and implicated in cardiac valve progenitor cell differentiation, maturation and adult aortic valve calcification in mice. We have previously reported periostin expression patterns during AV valve development in mice. Because periostin can play critical roles in aortic valve interstitial cell differentiation and can be correlated with adult valve disease pathogenesis, in the present study we specifically focused on periostin expression during outflow tract (OT) development and its expression within the adult mouse valves. We previously reported that periostin expression in valve progenitor cells was altered by exogenously adding BMP-2 in culture. In this study, we investigated whether expression of periostin and other valvulogenic ECM proteins was altered in Smad6-mutant newborn mice in vivo. Periostin protein was localized within OT during embryonic development in mice. At embryonic day (ED) 13.5, robust periostin expression was detected within the developing pulmonary trunk and developing pulmonary and aortic valves. Periostin expression remained intense in pulmonary and aortic valves up to the adult stage. Our immunohistochemical and immunointensity analyses revealed that periostin expression was significantly reduced in the aortic valves in Smad6-/- neonatal hearts. Versican expression was also significantly reduced in Smad6-/- aortic valves, whereas, hyaluronan deposition was not significantly altered in the Smad6-/- neonatal valves. Expression of periostin and versican was less prominently affected in AV valves compared to the aortic valves, suggesting that a cell lineage/origin-dependent response to regulatory molecules may play a critical role in valve interstitial cell development and ECM protein expression.

Keywords: Endocardial cushion; Heart valve; Hyaluronan; Outflow tract; Periostin; Smad6; Versican.