Structural and functional dissociation between the septal and the temporal part of the dentate gyrus predispose for possible differentiations in the ongoing neurogenesis process of the adult hippocampus. In this study, BrdU-dated subpopulations of the rat septal and temporal dentate gyrus (coexpressing GFAP, DCX, NeuN, calretinin, calbindin, S100, caspase-3 or fractin) were quantified comparatively at 2, 5, 7, 14, 21, and 30 days after BrdU administration in order to examine the successive time-frames of the neurogenesis process, the glial or neuronal commitment of newborn cells and the occurring apoptotic cell death. Newborn neurons' migration from the neurogenic subgranular zone to the inner granular cell layer and expression of glutamate NMDA and AMPA receptors were also studied. BrdU immunocytochemistry revealed comparatively higher numbers of BrdU(+) cells in the septal part, but stereological analysis of newborn and total granule cells showed an identical ratio in the two parts, indicating an equivalent neurogenic ability, and a common topographical pattern along each part's longitudinal and transverse axis. Similarly, both parts exhibited extremely low levels of newborn glial and apoptotic cells. However, despite the initially equal division rate and pattern of the septal and temporal proliferating cells, their later proliferative profile diverged in the two parts. Dynamic differences in the differentiation, migration and maturation process of the two BrdU-incorporating subpopulations of newborn neurons were also detected, along with differences in their survival pattern. Therefore, we propose that various factors, including developmental date birth, local DG microenvironment and distinct functionality of the two parts may be the critical regulators of the ongoing neurogenesis process, leading the septal part to a continuous, rapid, and less-disciplined genesis rate, whereas the quiescent temporal microenvironment preserves a quite steady, less-demanding neurogenesis process.
Keywords: BrdU; adult hippocampal neurogenesis; gliogenesis; maturation; septo-temporal axis.
© 2014 Wiley Periodicals, Inc.