Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 21:4:72.
doi: 10.1186/s13568-014-0072-5. eCollection 2014.

Stepwise enhancement of catalytic performance of haloalkane dehalogenase LinB towards β-hexachlorocyclohexane

Affiliations

Stepwise enhancement of catalytic performance of haloalkane dehalogenase LinB towards β-hexachlorocyclohexane

Ryota Moriuchi et al. AMB Express. .

Abstract

Two haloalkane dehalogenases, LinBUT and LinBMI, each with 296 amino acid residues, exhibit only seven amino acid residue differences between them, but LinBMI's catalytic performance towards β-hexachlorocyclohexane (β-HCH) is considerably higher than LinBUT's. To elucidate the molecular basis governing this difference, intermediate mutants between LinBUT and LinBMI were constructed and kinetically characterized. The activities of LinBUT-based mutants gradually increased by cumulative mutations into LinBUT, and the effects of the individual amino acid substitutions depended on combination with other mutations. These results indicated that LinBUT's β-HCH degradation activity can be enhanced in a stepwise manner by the accumulation of point mutations.

Keywords: Biodegradation; Haloalkane dehalogenase; Protein evolution; Xenobiotics; β-Hexachlorocyclohexane.

PubMed Disclaimer

Figures

Figure 1
Figure 1
β-HCH degradation reactions catalyzed by LinBUTand LinBMI. LinBMI converts β-HCH to PCHL and further to TCDL, while LinBUT catalyzes only the first conversion step of β-HCH to PCHL.
Figure 2
Figure 2
Structure of LinBMI (PDB code 4H77) (Okai et al. [2013]) and location of catalytic triad (D108, E132, and H272; shown in red) and the seven dissimilar amino acid residues between LinBMI and LinBUT: V134 and V112 (in magenta), L138, H247, and I253 (in cyan), T135 (in green), and T81 (in blue). See text for detail.
Figure 3
Figure 3
Degradation of β-HCH in reaction mixtures containing LinBUTand its mutant derivatives. LinBUT wild-type (a) and its mutants, M1-1 (b), M1-2 (c), M1-3 (d), M1-4 (e), M1-5 (f), M1-6 (g), M1-7 (h), M2-1 (i), M3-1 (j), M3-2 (k), M3-3 (l). The closed circle and closed and open triangles represent β-HCH, PCHL, and TCDL, respectively. Each value given is the mean of triplicates. Kinetic data were fitted to the irreversible two-step reaction scheme of β-HCH conversion to TCDL via PCHL (Scheme 1 in Materials and methods) by using GEPASI 3.2 software (Mendes [1997]) and shown in solid lines. The specificity constants and their standard errors for both reaction steps (k1 and k2) were obtained from the calculation (Table 1).
Figure 4
Figure 4
Degradation of β-HCH in reaction mixtures containing LinBUTmutant derivatives. M4-1 (m), M4-2 (n), M5-1 (o), M5-2 (p), M5-3 (q), M5-4 (r), and M5-5 (s). See legend of Figure 3.
Figure 5
Figure 5
The β-HCH degradation activities of LinBUT, LinBMI, and their intermediate mutants. Specificity constants of LinBUT (vertical hexagon), LinBMI (circle), and their intermediate mutants (single, open triangle; double, horizontal hexagon; 3-point, pentagon; 4-point, square; 5-point, diamond; and 6-point, closed triangle) for the first conversion (from β-HCH to PCHL: X axis) and the second conversion (from PCHL to TCDL: Y axis) steps (Table 1) were plotted in logarithmical values. The effects of A112V (b), I138L (c), M253I (d), A81T (e), and A135T (f) mutations were extracted from the total plot (a) and shown by arrows. One potential evolutionary route from LinBUT to LinBMI by the accumulation of seven point mutations is shown by arrows (a).

Similar articles

Cited by

References

    1. Aharoni A, Gaidukov L, Khersonsky O, Mc QGS, Roodveldt C, Tawfik DS. The ‘evolvability’ of promiscuous protein functions. Nature Genet. 2005;37:73–76. - PubMed
    1. Damborsky J, Koca J. Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons. Protein Eng. 1999;12:989–998. doi: 10.1093/protein/12.11.989. - DOI - PubMed
    1. Gupta A, Kaushik C, Kaushik A. Degradation of hexachlorocyclohexane (HCH; α, β, γ and δ) by Bacillus circulans and Bacillus brevis isolated from soil contaminated with HCH. Soil Biol Biochem. 2000;32:1803–1805. doi: 10.1016/S0038-0717(00)00072-9. - DOI
    1. Gupta A, Kaushik CP, Kaushik A. Degradation of hexachlorocyclohexane isomers by two strains of Alcaligenes faecalis isolated from a contaminated site. Bull Environ Contam Toxicol. 2001;66:794–800. - PubMed
    1. Ito M, Prokop Z, Klvana M, Otsubo Y, Tsuda M, Damborsky J, Nagata Y. Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from γ-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205. Arch Microbiol. 2007;188:313–325. doi: 10.1007/s00203-007-0251-8. - DOI - PubMed

LinkOut - more resources