Arachidicoccus rhizosphaerae gen. nov., sp. nov., a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil

Int J Syst Evol Microbiol. 2015 Feb;65(Pt 2):578-586. doi: 10.1099/ijs.0.069377-0. Epub 2014 Nov 17.

Abstract

Three novel bacterial strains, designated Vu-144(T), Vu-7 and Vu-35, were isolated on minimal medium from rhizosphere soil of field-grown cowpea and subjected to a taxonomic study using a polyphasic approach. Cells of the strains were Gram-stain-negative, non-motile, non-spore-forming, coccoid rods, and formed non-pigmented colonies. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Vu-144(T) was affiliated with an uncultivated lineage of the phylum Bacteroidetes. Its closest phylogenetic neighbour was the recently described species Niastella populi, a member of the family Chitinophagaceae, with just 90.7 % sequence similarity to the type strain. The only isoprenoid quinone detected was menaquinone 7 (MK-7). The fatty acid profiles showed large amounts of iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G and minor amounts of summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and other fatty acids, allowing the differentiation of the strains from other genera. The G+C content of the genomic DNA of the three strains ranged from 43.1 to 44.3 mol%. In addition to phosphatidylethanolamine, the major polar lipids were three unidentified aminophospholipids (APL1-APL3), two unidentified phospholipids (PL1, PL2) and three unidentified lipids (UL1-UL3). Biochemical test patterns also differed from those of Niastella populi and members of other genera. All three isolates showed plant-growth-promoting properties, e.g. the ability to produce indole-3-acetic acid and NH3 and to solubilize phosphate, utilized 1-aminocyclopropane 1-carboxylate (ACC) as a sole source of nitrogen and possessed the ACC deaminase enzyme. The novel isolates readily colonized roots and stimulated growth of tomato and cowpea under glasshouse conditions. Inoculated plants showed a 45-60 % increase in dry matter weight with respect to uninoculated controls. On the basis of the evidence from our polyphasic study, isolate Vu-144(T) represents a novel genus and species in the family Chitinophagaceae, for which the name Arachidicoccus rhizosphaerae gen. nov., sp. nov. is proposed. The type strain of Arachidicoccus rhizosphaerae is Vu-144(T) ( = KCTC 22378(T) = NCIMB 14473(T)).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arachis / microbiology
  • Bacterial Typing Techniques
  • Bacteroidetes / classification*
  • Bacteroidetes / genetics
  • Bacteroidetes / isolation & purification
  • Base Composition
  • DNA, Bacterial / genetics
  • Fabaceae / microbiology
  • Fatty Acids / chemistry
  • India
  • Molecular Sequence Data
  • Phospholipids / chemistry
  • Phylogeny*
  • RNA, Ribosomal, 16S / genetics
  • Rhizosphere*
  • Sequence Analysis, DNA
  • Soil Microbiology*
  • Vitamin K 2 / analogs & derivatives
  • Vitamin K 2 / chemistry

Substances

  • DNA, Bacterial
  • Fatty Acids
  • Phospholipids
  • RNA, Ribosomal, 16S
  • Vitamin K 2
  • menaquinone 7

Associated data

  • GENBANK/EU672808
  • GENBANK/EU672809
  • GENBANK/EU672810