Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata
- PMID: 25405080
- PMCID: PMC4231364
- DOI: 10.1186/s13568-014-0044-9
Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata
Abstract
Thermomonospora curvata is a thermophilic actinomycete phylogenetically related to Thermobifida fusca that produces extracellular hydrolases capable of degrading synthetic polyesters. Analysis of the genome of T. curvata DSM43183 revealed two genes coding for putative polyester hydrolases Tcur1278 and Tcur0390 sharing 61% sequence identity with the T. fusca enzymes. Mature proteins of Tcur1278 and Tcur0390 were cloned and expressed in Escherichia coli TOP10. Tcur1278 and Tcur0390 exhibited an optimal reaction temperature against p-nitrophenyl butyrate at 60°C and 55°C, respectively. The optimal pH for both enzymes was determined at pH 8.5. Tcur1278 retained more than 80% and Tcur0390 less than 10% of their initial activity following incubation for 60 min at 55°C. Tcur0390 showed a higher hydrolytic activity against poly(ε-caprolactone) and polyethylene terephthalate (PET) nanoparticles compared to Tcur1278 at reaction temperatures up to 50°C. At 55°C and 60°C, hydrolytic activity against PET nanoparticles was only detected with Tcur1278. In silico modeling of the polyester hydrolases and docking with a model substrate composed of two repeating units of PET revealed the typical fold of α/β serine hydrolases with an exposed catalytic triad. Molecular dynamics simulations confirmed the superior thermal stability of Tcur1278 considered as the main reason for its higher hydrolytic activity on PET.
Keywords: Polyester hydrolase; Polyethylene terephthalate (PET); Synthetic polyester; Thermomonospora curvata.
Figures
Similar articles
-
Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition.Biotechnol Bioeng. 2016 Aug;113(8):1658-65. doi: 10.1002/bit.25941. Epub 2016 Feb 4. Biotechnol Bioeng. 2016. PMID: 26804057
-
Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.Adv Appl Microbiol. 2014;89:267-305. doi: 10.1016/B978-0-12-800259-9.00007-X. Adv Appl Microbiol. 2014. PMID: 25131405 Review.
-
Antarctic Polyester Hydrolases Degrade Aliphatic and Aromatic Polyesters at Moderate Temperatures.Appl Environ Microbiol. 2022 Jan 11;88(1):e0184221. doi: 10.1128/AEM.01842-21. Epub 2021 Oct 27. Appl Environ Microbiol. 2022. PMID: 34705547 Free PMC article.
-
Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach.Appl Environ Microbiol. 2012 Mar;78(5):1556-62. doi: 10.1128/AEM.06725-11. Epub 2011 Dec 22. Appl Environ Microbiol. 2012. PMID: 22194294 Free PMC article.
-
Biochemistry and genetics of actinomycete cellulases.Crit Rev Biotechnol. 1992;12(1-2):45-63. doi: 10.3109/07388559209069187. Crit Rev Biotechnol. 1992. PMID: 1733521 Review.
Cited by
-
New combined absorption/1H NMR method for qualitative and quantitative analysis of PET degradation products.Environ Sci Pollut Res Int. 2024 Mar;31(13):20689-20697. doi: 10.1007/s11356-024-32481-0. Epub 2024 Feb 23. Environ Sci Pollut Res Int. 2024. PMID: 38393574 Free PMC article.
-
Insight on recently discovered PET polyester-degrading enzymes, thermostability and activity analyses.3 Biotech. 2024 Jan;14(1):31. doi: 10.1007/s13205-023-03882-8. Epub 2024 Jan 2. 3 Biotech. 2024. PMID: 38178895 Review.
-
Exploring Microorganisms from Plastic-Polluted Sites: Unveiling Plastic Degradation and PHA Production Potential.Microorganisms. 2023 Dec 3;11(12):2914. doi: 10.3390/microorganisms11122914. Microorganisms. 2023. PMID: 38138058 Free PMC article.
-
Biodegradation of Poly(ethylene terephthalate) by Bacillus safensis YX8.Int J Mol Sci. 2023 Nov 17;24(22):16434. doi: 10.3390/ijms242216434. Int J Mol Sci. 2023. PMID: 38003625 Free PMC article.
-
An archaeal lid-containing feruloyl esterase degrades polyethylene terephthalate.Commun Chem. 2023 Sep 11;6(1):193. doi: 10.1038/s42004-023-00998-z. Commun Chem. 2023. PMID: 37697032 Free PMC article.
References
-
- Alisch M, Feuerhack A, Müller H, Mensak B, Andreaus J, Zimmermann W. Biocatalytic modification of polyethylene terephthalate fibres by esterases from actinomycete isolates. Biocatal Biotransform. 2004;22(5-6):347–351. doi: 10.1080/10242420400025877. - DOI
-
- Alves NM, Mano JF, Balaguer E, Meseguer Duenas JM, Gomez Ribelles JL. Glass transition and structural relaxation in semi-crystalline poly(ethylene terephthalate): a DSC study. Polymer. 2002;43(15):4111–4122. doi: 10.1016/S0032-3861(02)00236-7. - DOI
-
- Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–3690. doi: 10.1063/1.448118. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
