Rationale: We aimed to test the interscan variation of semi-automatic volumetry of subsolid nodules (SSNs), as growth evaluation is important for SSN management.
Methods: From a lung cancer screening trial all SSNs that were stable over at least 3 months were included (N = 44). SSNs were quantified on the baseline CT by two observers using semi-automatic volumetry software for effective diameter, volume, and mass. One observer also measured the SSNs on the second CT 3 months later. Interscan variation was evaluated using Bland-Altman plots. Observer agreement was calculated as intraclass correlation coefficient (ICC). Data are presented as mean (± standard deviation) or median and interquartile range (IQR). A Mann-Whitney U test was used for the analysis of the influence of adjustments on the measurements.
Results: Semi-automatic measurements were feasible in all 44 SSNs. The interscan limits of agreement ranged from -12.0 % to 9.7 % for diameter, -35.4 % to 28.6 % for volume and -27.6 % to 30.8 % for mass. Agreement between observers was good with intraclass correlation coefficients of 0.978, 0.957, and 0.968 for diameter, volume, and mass, respectively.
Conclusion: Our data suggest that when using our software an increase in mass of 30 % can be regarded as significant growth.
Key points: • Recently, recommendations regarding subsolid nodules have stressed the importance of growth quantification. • Volumetric measurement of subsolid nodules is feasible with good interscan agreement. • Increase of mass of 30 % can be regarded as significant growth.