Negotiating Multicollinearity with Spike-and-Slab Priors
- PMID: 25419004
- PMCID: PMC4239132
- DOI: 10.1007/s40300-014-0047-y
Negotiating Multicollinearity with Spike-and-Slab Priors
Abstract
In multiple regression under the normal linear model, the presence of multicollinearity is well known to lead to unreliable and unstable maximum likelihood estimates. This can be particularly troublesome for the problem of variable selection where it becomes more difficult to distinguish between subset models. Here we show how adding a spike-and-slab prior mitigates this difficulty by filtering the likelihood surface into a posterior distribution that allocates the relevant likelihood information to each of the subset model modes. For identification of promising high posterior models in this setting, we consider three EM algorithms, the fast closed form EMVS version of Rockova and George (2014) and two new versions designed for variants of the spike-and-slab formulation. For a multimodal posterior under multicollinearity, we compare the regions of convergence of these three algorithms. Deterministic annealing versions of the EMVS algorithm are seen to substantially mitigate this multimodality. A single simple running example is used for illustration throughout.
Figures
Similar articles
-
The spike-and-slab quantile LASSO for robust variable selection in cancer genomics studies.Stat Med. 2024 Nov 20;43(26):4928-4983. doi: 10.1002/sim.10196. Epub 2024 Sep 11. Stat Med. 2024. PMID: 39260448
-
The spike-and-slab lasso and scalable algorithm to accommodate multinomial outcomes in variable selection problems.J Appl Stat. 2023 Sep 14;51(11):2039-2061. doi: 10.1080/02664763.2023.2258301. eCollection 2024. J Appl Stat. 2023. PMID: 39157266 Free PMC article.
-
Incorporating spatial structure into inclusion probabilities for Bayesian variable selection in generalized linear models with the spike-and-slab elastic net.J Stat Plan Inference. 2022 Mar;217:141-152. doi: 10.1016/j.jspi.2021.07.010. Epub 2021 Jul 29. J Stat Plan Inference. 2022. PMID: 36911105 Free PMC article.
-
An Expectation Conditional Maximization approach for Gaussian graphical models.J Comput Graph Stat. 2019;28(4):767-777. doi: 10.1080/10618600.2019.1609976. Epub 2019 Jun 19. J Comput Graph Stat. 2019. PMID: 33033426 Free PMC article.
-
A hierarchical spike-and-slab model for pan-cancer survival using pan-omic data.BMC Bioinformatics. 2022 Jun 17;23(1):235. doi: 10.1186/s12859-022-04770-3. BMC Bioinformatics. 2022. PMID: 35710340 Free PMC article.
Cited by
-
Variable Selection in Bayesian Multiple Instance Regression using Shotgun Stochastic Search.Comput Stat Data Anal. 2024 Aug;196:107954. doi: 10.1016/j.csda.2024.107954. Epub 2024 Mar 24. Comput Stat Data Anal. 2024. PMID: 38646418
-
Integration of immune and hypoxia gene signatures improves the prediction of radiosensitivity in breast cancer.Am J Cancer Res. 2022 Mar 15;12(3):1222-1240. eCollection 2022. Am J Cancer Res. 2022. PMID: 35411250 Free PMC article.
-
Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping.Environmetrics. 2017 Dec;28(8):e2465. doi: 10.1002/env.2465. Epub 2017 Sep 25. Environmetrics. 2017. PMID: 29230091 Free PMC article.
-
Spatio-temporal Bayesian model selection for disease mapping.Environmetrics. 2016 Dec;27(8):466-478. doi: 10.1002/env.2410. Epub 2016 Sep 28. Environmetrics. 2016. PMID: 28070156 Free PMC article.
-
Spatially-dependent Bayesian model selection for disease mapping.Stat Methods Med Res. 2018 Jan;27(1):250-268. doi: 10.1177/0962280215627298. Epub 2016 Jul 20. Stat Methods Med Res. 2018. PMID: 28034176 Free PMC article.
References
-
- Bar H, Booth J, Wells M. An Empirical Bayes Approach to Variable Selection and QTL Analysis. In the Proceedings of the 25th International Workshop on Statistical Modelling, Glasgow, Scotland. 2010:63–68.
-
- Figueiredo MA. Adaptive Sparseness for Supervised Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003;25:1150–1159.
-
- George EI, McCulloch RE. Variable Selection Via Gibbs Sampling. Journal of the American Statistical Association. 1993;88:881–889.
-
- George EI, McCulloch RE. Approaches for Bayesian Variable Selection. Statistica Sinica. 1997;7:339–373.
-
- George E, Rockova V, Lesaffre E. Faster spike-and-slab variable selection with dual coordinate ascent EM. Proceedings of the 28thWorkshop on Statistical Modelling. 2013;1:165–170.
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources