MGAS: a powerful tool for multivariate gene-based genome-wide association analysis
- PMID: 25431328
- PMCID: PMC4382905
- DOI: 10.1093/bioinformatics/btu783
MGAS: a powerful tool for multivariate gene-based genome-wide association analysis
Abstract
Motivation: Standard genome-wide association studies, testing the association between one phenotype and a large number of single nucleotide polymorphisms (SNPs), are limited in two ways: (i) traits are often multivariate, and analysis of composite scores entails loss in statistical power and (ii) gene-based analyses may be preferred, e.g. to decrease the multiple testing problem.
Results: Here we present a new method, multivariate gene-based association test by extended Simes procedure (MGAS), that allows gene-based testing of multivariate phenotypes in unrelated individuals. Through extensive simulation, we show that under most trait-generating genotype-phenotype models MGAS has superior statistical power to detect associated genes compared with gene-based analyses of univariate phenotypic composite scores (i.e. GATES, multiple regression), and multivariate analysis of variance (MANOVA). Re-analysis of metabolic data revealed 32 False Discovery Rate controlled genome-wide significant genes, and 12 regions harboring multiple genes; of these 44 regions, 30 were not reported in the original analysis.
Conclusion: MGAS allows researchers to conduct their multivariate gene-based analyses efficiently, and without the loss of power that is often associated with an incorrectly specified genotype-phenotype models.
Availability and implementation: MGAS is freely available in KGG v3.0 (http://statgenpro.psychiatry.hku.hk/limx/kgg/download.php). Access to the metabolic dataset can be requested at dbGaP (https://dbgap.ncbi.nlm.nih.gov/). The R-simulation code is available from http://ctglab.nl/people/sophie_van_der_sluis.
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author 2014. Published by Oxford University Press.
Figures
Similar articles
-
TATES: efficient multivariate genotype-phenotype analysis for genome-wide association studies.PLoS Genet. 2013;9(1):e1003235. doi: 10.1371/journal.pgen.1003235. Epub 2013 Jan 24. PLoS Genet. 2013. PMID: 23359524 Free PMC article.
-
Multivariate Gene-Based Association Test on Family Data in MGAS.Behav Genet. 2016 Sep;46(5):718-725. doi: 10.1007/s10519-016-9787-1. Epub 2016 Apr 6. Behav Genet. 2016. PMID: 27048268
-
METAINTER: meta-analysis of multiple regression models in genome-wide association studies.Bioinformatics. 2015 Jan 15;31(2):151-7. doi: 10.1093/bioinformatics/btu629. Epub 2014 Sep 23. Bioinformatics. 2015. PMID: 25252781
-
JEPEG: a summary statistics based tool for gene-level joint testing of functional variants.Bioinformatics. 2015 Apr 15;31(8):1176-82. doi: 10.1093/bioinformatics/btu816. Epub 2014 Dec 12. Bioinformatics. 2015. PMID: 25505091 Free PMC article.
-
Spinning convincing stories for both true and false association signals.Genet Epidemiol. 2019 Jun;43(4):356-364. doi: 10.1002/gepi.22189. Epub 2019 Jan 18. Genet Epidemiol. 2019. PMID: 30657194 Free PMC article. Review.
Cited by 15 articles
-
Multi-trait analysis of rare-variant association summary statistics using MTAR.Nat Commun. 2020 Jun 5;11(1):2850. doi: 10.1038/s41467-020-16591-0. Nat Commun. 2020. PMID: 32503972 Free PMC article.
-
Powerful and Efficient Strategies for Genetic Association Testing of Symptom and Questionnaire Data in Psychiatric Genetic Studies.Sci Rep. 2019 May 17;9(1):7523. doi: 10.1038/s41598-019-44046-0. Sci Rep. 2019. PMID: 31101869 Free PMC article.
-
Genome-wide association study of blood lipids in Indians confirms universality of established variants.J Hum Genet. 2019 Jun;64(6):573-587. doi: 10.1038/s10038-019-0591-7. Epub 2019 Mar 25. J Hum Genet. 2019. PMID: 30911093
-
Comparison of methods for multivariate gene-based association tests for complex diseases using common variants.Eur J Hum Genet. 2019 May;27(5):811-823. doi: 10.1038/s41431-018-0327-8. Epub 2019 Jan 25. Eur J Hum Genet. 2019. PMID: 30683923 Free PMC article.
-
New Method Application for Marker-Trait Association Studies in Plants: Partial Least Square Regression Aids Detection of Simultaneous Correlations.Agric Res Technol. 2017 Dec;12(5):555864. doi: 10.19080/ARTOAJ.2017.12.555864. Epub 2017 Dec 15. Agric Res Technol. 2017. PMID: 30345411 Free PMC article.
References
-
- Aulchenko Y.S., et al. . (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics, 23, 1294–1296. - PubMed
-
- Benjamini Y., Hochberg Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57, 289–300.
Publication types
MeSH terms
Grant support
LinkOut - more resources
Full Text Sources
Medical
