The unfolded protein response (UPR) allows cells to adjust the capacity of the endoplasmic reticulum (ER) to the load of ER-associated tasks. We show that activation of the Caenorhabditis elegans transcription factor DAF-16 and its human homolog FOXO3 restore secretory protein metabolism when the UPR is dysfunctional.We show that DAF-16 establishes alternative ER-associated degradation systems that degrade misfolded proteins independently of the ER stress sensor ire-1 and the ER-associated E3 ubiquitin ligase complex sel-11/sel-1. This is achieved by enabling autophagy-mediated degradation and by increasing the levels of skr-5, a component of an ER associated ubiquitin ligase complex. These degradation systems can act together with the conserved UPR to improve ER homeostasis and ER stress resistance, beyond wild-type levels. Because there is no sensor in the ER that activates DAF-16 in response to intrinsic ER stress, natural or artificial interventions that activate DAF-16 may be useful therapeutic approaches to maintain ER homeostasis.