LHT7, a chemically modified heparin, inhibits multiple stages of angiogenesis by blocking VEGF, FGF2 and PDGF-B signaling pathways

Biomaterials. 2015 Jan:37:271-8. doi: 10.1016/j.biomaterials.2014.10.004. Epub 2014 Oct 28.

Abstract

Despite the therapeutic benefits of the angiogenesis inhibitors shown in the clinics, they have encountered an unexpected limitation by the occurrence of acquired resistance. Although the mechanism of the resistance is not clear so far, the upregulation of alternative angiogenic pathways and stabilization of endothelium by mural cells were reported to be responsible. Therefore, blocking multiple angiogenic pathways that are crucial in tumor angiogenesis has been highlighted to overcome such limitations. To develop an angiogenesis inhibitor that could block multiple angiogenic factors, heparin is an excellent lead compound since wide array of angiogenic factors are heparin-binding proteins. In previous study, we reported a heparin-derived angiogenesis inhibitor, LHT7, as a potent angiogenesis inhibitor and showed that it blocked VEGF signaling pathway. Here we show that LHT7 could block the fibroblast growth factor 2 (FGF2) and platelet-derived growth factor B (PDGF-B) in addition to VEGF. Simultaneous blockade of these angiogenic factors resulted in inhibition of multiple stages of the angiogenic process, including initial angiogenic response to maturation of the endothelium by pericyte coverage in vitro. In addition, the treatment of LHT7 in vivo did not show any sign of vascular normalization and directly led to decreased blood perfusion throughout the tumor. Our findings show that LHT7 could effectively inhibit tumor angiogenesis by blocking multiple stages of the angiogenesis, and could potentially be used to overcome the resistance.

Keywords: Angiogenesis; FGF2; Heparin; PDGF-B; VEGF.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiogenesis Inhibitors / pharmacology*
  • Angiogenesis Inhibitors / therapeutic use
  • Animals
  • Cell Line
  • Chemotaxis / drug effects
  • Coculture Techniques
  • Collagen / metabolism
  • Contrast Media
  • Drug Combinations
  • Endothelium, Vascular / drug effects
  • Female
  • Fibroblast Growth Factor 2 / metabolism*
  • Heparin, Low-Molecular-Weight / analogs & derivatives*
  • Heparin, Low-Molecular-Weight / pharmacology
  • Heparin, Low-Molecular-Weight / therapeutic use
  • Human Umbilical Vein Endothelial Cells / cytology
  • Human Umbilical Vein Endothelial Cells / drug effects
  • Humans
  • Kinetics
  • Laminin / metabolism
  • Magnetic Resonance Imaging
  • Male
  • Mice, Inbred BALB C
  • Neoplasms / blood supply
  • Neovascularization, Pathologic / drug therapy*
  • Neovascularization, Pathologic / metabolism*
  • Pericytes / cytology
  • Pericytes / drug effects
  • Proteoglycans / metabolism
  • Proto-Oncogene Proteins c-sis / metabolism*
  • Signal Transduction / drug effects
  • Taurocholic Acid / analogs & derivatives*
  • Taurocholic Acid / pharmacology
  • Taurocholic Acid / therapeutic use
  • Vascular Endothelial Growth Factor A / metabolism*

Substances

  • Angiogenesis Inhibitors
  • Contrast Media
  • Drug Combinations
  • Heparin, Low-Molecular-Weight
  • LHT7 compound
  • Laminin
  • Proteoglycans
  • Proto-Oncogene Proteins c-sis
  • Vascular Endothelial Growth Factor A
  • Fibroblast Growth Factor 2
  • matrigel
  • Taurocholic Acid
  • Collagen