Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Apr 15:753:51-65.
doi: 10.1016/j.ejphar.2014.10.063. Epub 2014 Nov 21.

Rodent models of treatment-resistant depression

Affiliations
Review

Rodent models of treatment-resistant depression

Barbara J Caldarone et al. Eur J Pharmacol. .

Abstract

Major depression is a prevalent and debilitating disorder and a substantial proportion of patients fail to reach remission following standard antidepressant pharmacological treatment. Limited efficacy with currently available antidepressant drugs highlights the need to develop more effective medications for treatment- resistant patients and emphasizes the importance of developing better preclinical models that focus on treatment- resistant populations. This review discusses methods to adapt and refine rodent behavioral models that are predictive of antidepressant efficacy to identify populations that show reduced responsiveness or are resistant to traditional antidepressants. Methods include separating antidepressant responders from non-responders, administering treatments that render animals resistant to traditional pharmacological treatments, and identifying genetic models that show antidepressant resistance. This review also examines pharmacological and non-pharmacological treatments regimes that have been effective in refractory patients and how some of these approaches have been used to validate animal models of treatment-resistant depression. The goals in developing rodent models of treatment-resistant depression are to understand the neurobiological mechanisms involved in antidepressant resistance and to develop valid models to test novel therapies that would be effective in patients that do not respond to traditional monoaminergic antidepressants.

Keywords: Animal model; Antidepressant; Behavior; Genetic; Pharmacology; Treatment resistant depression.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM. Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry. 2008;63:642–649. - PMC - PubMed
    1. Agostinho FR, Reus GZ, Stringari RB, Ribeiro KF, Ferraro AK, Benedet J, Rochi N, Scaini G, Streck EL, Quevedo J. Treatment with olanzapine, fluoxetine and olanzapine/fluoxetine alters citrate synthase activity in rat brain. Neurosci Lett. 2011a;487:278–281. - PubMed
    1. Agostinho FR, Reus GZ, Stringari RB, Ribeiro KF, Pfaffenseller B, Stertz L, Panizzutti BS, Kapczinski F, Quevedo J. Olanzapine plus fluoxetine treatment increases Nt-3 protein levels in the rat prefrontal cortex. Neurosci Lett. 2011b;497:99–103. - PubMed
    1. Agostinho FR, Scaini G, Ferreira GK, Jeremias IC, Reus GZ, Rezin GT, Castro AA, Zugno AI, Quevedo J, Streck EL. Effects of olanzapine, fluoxetine and olanzapine/fluoxetine on creatine kinase activity in rat brain. Brain Res Bull. 2009;80:337–340. - PubMed
    1. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–95. - PMC - PubMed

Publication types

MeSH terms