Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 1:150:9-20.
doi: 10.1016/j.jenvman.2014.11.008. Epub 2014 Nov 25.

Predicting bottlenose dolphin distribution along Liguria coast (northwestern Mediterranean Sea) through different modeling techniques and indirect predictors

Affiliations

Predicting bottlenose dolphin distribution along Liguria coast (northwestern Mediterranean Sea) through different modeling techniques and indirect predictors

C Marini et al. J Environ Manage. .

Abstract

Habitat modeling is an important tool to investigate the quality of the habitat for a species within a certain area, to predict species distribution and to understand the ecological processes behind it. Many species have been investigated by means of habitat modeling techniques mainly to address effective management and protection policies and cetaceans play an important role in this context. The bottlenose dolphin (Tursiops truncatus) has been investigated with habitat modeling techniques since 1997. The objectives of this work were to predict the distribution of bottlenose dolphin in a coastal area through the use of static morphological features and to compare the prediction performances of three different modeling techniques: Generalized Linear Model (GLM), Generalized Additive Model (GAM) and Random Forest (RF). Four static variables were tested: depth, bottom slope, distance from 100 m bathymetric contour and distance from coast. RF revealed itself both the most accurate and the most precise modeling technique with very high distribution probabilities predicted in presence cells (90.4% of mean predicted probabilities) and with 66.7% of presence cells with a predicted probability comprised between 90% and 100%. The bottlenose distribution obtained with RF allowed the identification of specific areas with particularly high presence probability along the coastal zone; the recognition of these core areas may be the starting point to develop effective management practices to improve T. truncatus protection.

Keywords: GAM; GLM; Habitat modeling; Ligurian coast; Pelagos sanctuary; Random forest; Tursiops truncatus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources