The war against heart failure: the Lancet lecture

Lancet. 2015 Feb 28;385(9970):812-24. doi: 10.1016/S0140-6736(14)61889-4. Epub 2014 Nov 16.


Heart failure is a global problem with an estimated prevalence of 38 million patients worldwide, a number that is increasing with the ageing of the population. It is the most common diagnosis in patients aged 65 years or older admitted to hospital and in high-income nations. Despite some progress, the prognosis of heart failure is worse than that of most cancers. Because of the seriousness of the condition, a declaration of war on five fronts has been proposed for heart failure. Efforts are underway to treat heart failure by enhancing myofilament sensitivity to Ca(2+); transfer of the gene for SERCA2a, the protein that pumps calcium into the sarcoplasmic reticulum of the cardiomyocyte, seems promising in a phase 2 trial. Several other abnormal calcium-handling proteins in the failing heart are candidates for gene therapy; many short, non-coding RNAs--ie, microRNAs (miRNAs)--block gene expression and protein translation. These molecules are crucial to calcium cycling and ventricular hypertrophy. The actions of miRNAs can be blocked by a new class of drugs, antagomirs, some of which have been shown to improve cardiac function in animal models of heart failure; cell therapy, with autologous bone marrow derived mononuclear cells, or autogenous mesenchymal cells, which can be administered as cryopreserved off the shelf products, seem to be promising in both preclinical and early clinical heart failure trials; and long-term ventricular assistance devices are now used increasingly as a destination therapy in patients with advanced heart failure. In selected patients, left ventricular assistance can lead to myocardial recovery and explantation of the device. The approaches to the treatment of heart failure described, when used alone or in combination, could become important weapons in the war against heart failure.

Publication types

  • Review

MeSH terms

  • Calcium / metabolism
  • Cell- and Tissue-Based Therapy / methods
  • Genetic Therapy / methods
  • Heart Failure / therapy*
  • Heart-Assist Devices
  • Humans
  • MicroRNAs / physiology
  • Myocytes, Cardiac / metabolism


  • MicroRNAs
  • Calcium