Salinomycin Suppresses PDGFRβ, MYC, and Notch Signaling in Human Medulloblastoma

Austin J Pharmacol Ther. 2014;2(3):1020.

Abstract

Medulloblastoma (MB) is the most common childhood brain tumor. Despite improved therapy and management, approximately 30% of patients die of the disease. To search for a more effective therapeutic strategy, the effects of salinomycin were tested on cell proliferation, cell death, and cell cycle progression in human MB cell lines. The results demonstrated that salinomycin inhibits cell proliferation, induces cell death , and disrupts cell cycle progression in MB cells. Salinomycin was also tested on the expression levels of key genes involved in proliferation and survival signaling and revealed that salinomycin down-regulates the expression of PDGFRβ, MYC, p21 and Bcl-2 as well as up-regulates the expression of cyclin A. In addition, the results reveal that salinomycin suppresses the expression of Hes1 and Hes5 in MB cells. Our data shed light on the potential of using salinomycin as a novel therapeutic agent for patients with MB.

Keywords: MYC; Medulloblastoma; Notch Signaling; PDGFRβ; Salinomycin.