Posttranslational modification of autophagy-related proteins in macroautophagy

Autophagy. 2015;11(1):28-45. doi: 10.4161/15548627.2014.984267.

Abstract

Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases.

Keywords: AMPK, AMP-activated protein kinase; ATG, autophagy-related; MTORC1, mechanistic target of rapamycin complex 1; PE, phosphatidylethanolamine; PTM, posttranslational modification; Ub, ubiquitin; Ubl, ubiquitin like; autophagy; autophagy-related proteins; posttranslational modification.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Autophagy*
  • Humans
  • Microtubule-Associated Proteins / metabolism*
  • Models, Biological
  • Protein Processing, Post-Translational*

Substances

  • Microtubule-Associated Proteins