Computational methods for the construction, editing, and error correction of DNA molecules and their libraries

Methods Mol Biol. 2015:1244:337-52. doi: 10.1007/978-1-4939-1878-2_17.

Abstract

The field of synthetic biology is fueled by steady advances in our ability to produce designer genetic material on demand. This relatively new technological capability stems from advancements in DNA construction biochemistry as well as supporting computational technologies such as tools for specifying large DNA libraries, as well as planning and optimizing their actual physical construction. In particular, the design, planning, and construction of user specified, combinatorial DNA libraries are of increasing interest. Here we present some of the computational tools we have built over the past decade to support the multidisciplinary task of constructing DNA molecules and their libraries. These technologies encompass computational methods for [1] planning and optimizing the construction of DNA molecules and libraries, [2] the utilization of existing natural or synthetic fragments, [3] identification of shared fragments, [4] planning primers and overlaps, [5] minimizing the number of assembly steps required, and (6) correcting erroneous constructs. Other computational technologies that are important in the overall process of DNA construction, such as [1] computational tools for efficient specification and intuitive visualization of large DNA libraries (which aid in debugging library design pre-construction) and [2] automated liquid handling robotic programming [Linshiz et al., Mol Syst Biol 4:191, 2008; Shabi et al., Syst Synth Biol 4:227-236, 2010], which aid in the construction process itself, have been omitted due to length limitations.

MeSH terms

  • Computational Biology / methods*
  • DNA / chemistry*
  • DNA / genetics
  • Synthetic Biology / methods*

Substances

  • DNA