The evolution of photosynthesis in chromist algae through serial endosymbioses
- PMID: 25493338
- PMCID: PMC4284659
- DOI: 10.1038/ncomms6764
The evolution of photosynthesis in chromist algae through serial endosymbioses
Abstract
Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity.
Figures
Similar articles
-
Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny.Mol Biol Evol. 2007 Aug;24(8):1832-42. doi: 10.1093/molbev/msm101. Epub 2007 May 23. Mol Biol Evol. 2007. PMID: 17522086
-
Photosynthetic eukaryotes unite: endosymbiosis connects the dots.Bioessays. 2004 Jan;26(1):50-60. doi: 10.1002/bies.10376. Bioessays. 2004. PMID: 14696040 Review.
-
Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis.Mol Biol Evol. 2008 Dec;25(12):2653-67. doi: 10.1093/molbev/msn206. Epub 2008 Sep 17. Mol Biol Evol. 2008. PMID: 18799712
-
Evolutionary Dynamics of Cryptophyte Plastid Genomes.Genome Biol Evol. 2017 Jul 1;9(7):1859-1872. doi: 10.1093/gbe/evx123. Genome Biol Evol. 2017. PMID: 28854597 Free PMC article.
-
A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.J Plant Res. 2005 Aug;118(4):247-55. doi: 10.1007/s10265-005-0219-1. Epub 2005 Jul 20. J Plant Res. 2005. PMID: 16032387 Review.
Cited by
-
Putative genome features of relic green alga-derived nuclei in dinoflagellates and future perspectives as model organisms.Commun Integr Biol. 2020 Jun 21;13(1):84-88. doi: 10.1080/19420889.2020.1776568. Commun Integr Biol. 2020. PMID: 33014260 Free PMC article.
-
The Origin and Evolution of Release Factors: Implications for Translation Termination, Ribosome Rescue, and Quality Control Pathways.Int J Mol Sci. 2019 Apr 23;20(8):1981. doi: 10.3390/ijms20081981. Int J Mol Sci. 2019. PMID: 31018531 Free PMC article. Review.
-
Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids.Sci Rep. 2020 Jan 24;10(1):1167. doi: 10.1038/s41598-020-58082-8. Sci Rep. 2020. PMID: 31980711 Free PMC article.
-
Structure and distinct supramolecular organization of a PSII-ACPII dimer from a cryptophyte alga Chroomonas placoidea.Nat Commun. 2024 May 28;15(1):4535. doi: 10.1038/s41467-024-48878-x. Nat Commun. 2024. PMID: 38806516 Free PMC article.
-
Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae.BMC Evol Biol. 2015 Feb 10;15:16. doi: 10.1186/s12862-015-0286-4. BMC Evol Biol. 2015. PMID: 25887237 Free PMC article.
References
-
- Martin W. & Kowallik K. V. Annotated English translation of Mereschkowsky’s 1905 paper ’Uber natur und ursprung der chromatophoren im pflanzenreiche. Eur. J. Phycol. 34, 287–295 (1999).
-
- Delwiche C. F. & Palmer J. D. inOrigins of Algae and their Plastids 11, ed. Bhattacharya D. 53–86Springer (1997).
-
- Keeling P. J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64, 583–607 (2013). - PubMed
-
- Gould S. B., Waller R. R. & McFadden G. I. Plastid evolution. Annu. Rev. Plant Biol. 59, 491–517 (2008). - PubMed
-
- Petersen J., Teich R., Brinkmann H. & Cerff R. A. ‘green’ phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. J. Mol. Evol. 62, 143–157 (2006). - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
