Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 5 (8), 825-7

Quantifying the Epidemic Spread of Ebola Virus (EBOV) in Sierra Leone Using Phylodynamics


Quantifying the Epidemic Spread of Ebola Virus (EBOV) in Sierra Leone Using Phylodynamics

Samuel Alizon et al. Virulence.


Measuring epidemic parameters early in an outbreak is essential to inform control efforts. Using the viral genome sequence and collection date from 78 infections in the 2014 Ebola virus outbreak in Sierra Leone, we estimate key epidemiological parameters such as infectious period duration (approximately 71 hours) and date of the first case in Sierra Leone (approximately April 25th). We also estimate the effective reproduction number, Re, (approximately 1.26), which is the number of secondary infections effectively caused by an infected individual and accounts for public health control measures. This study illustrates that phylodynamics methods, applied during the initial phase of an outbreak on fewer and more easily attainable data, can yield similar estimates to count-based epidemiological studies.

Keywords: Bayesian inference; Ebola virus (EBOV); R0; epidemiology; phylogenetics.


Figure 1.
Figure 1.
(A) Epidemiological predictions for cumulative number of cases in Sierra Leone based on the SIR birth-death (BD) model for the phylogenetic tree prior. The gray region indicates the time during which sequences were collected (from day 147 – 169) and the black dots are the actual cumulative number of cases reported through Sept 10 (Day 253). Light green lines show the trajectories of stochastic model simulations, and the solid dark blue line indicates the deterministic solution (with the dashed dark blue lines indicating 95% confidence intervals and the dotted blue lines the 50% confidence intervals). (B) The same comparison as in panel A, but using the coalescent model with exponential growth (EXP) for the phylogenetic tree prior. (C) Bayesian Skyline skyline with 95% HPD inferred using the BS coalescent model for the phylogenetic tree prior.

Similar articles

  • Genetic diversity and evolutionary dynamics of Ebola virus in Sierra Leone.
    Tong YG, Shi WF, Liu D, Qian J, Liang L, Bo XC, Liu J, Ren HG, Fan H, Ni M, Sun Y, Jin Y, Teng Y, Li Z, Kargbo D, Dafae F, Kanu A, Chen CC, Lan ZH, Jiang H, Luo Y, Lu HJ, Zhang XG, Yang F, Hu Y, Cao YX, Deng YQ, Su HX, Sun Y, Liu WS, Wang Z, Wang CY, Bu ZY, Guo ZD, Zhang LB, Nie WM, Bai CQ, Sun CH, An XP, Xu PS, Zhang XL, Huang Y, Mi ZQ, Yu D, Yao HW, Feng Y, Xia ZP, Zheng XX, Yang ST, Lu B, Jiang JF, Kargbo B, He FC, Gao GF, Cao WC; China Mobile Laboratory Testing Team in Sierra Leone. Tong YG, et al. Nature. 2015 Aug 6;524(7563):93-6. doi: 10.1038/nature14490. Epub 2015 May 13. Nature. 2015. PMID: 25970247
  • Identifying spatio-temporal dynamics of Ebola in Sierra Leone using virus genomes.
    Gustafson KB, Proctor JL. Gustafson KB, et al. J R Soc Interface. 2017 Nov;14(136):20170583. doi: 10.1098/rsif.2017.0583. J R Soc Interface. 2017. PMID: 29187639 Free PMC article.
  • Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa.
    Carroll MW, Matthews DA, Hiscox JA, Elmore MJ, Pollakis G, Rambaut A, Hewson R, García-Dorival I, Bore JA, Koundouno R, Abdellati S, Afrough B, Aiyepada J, Akhilomen P, Asogun D, Atkinson B, Badusche M, Bah A, Bate S, Baumann J, Becker D, Becker-Ziaja B, Bocquin A, Borremans B, Bosworth A, Boettcher JP, Cannas A, Carletti F, Castilletti C, Clark S, Colavita F, Diederich S, Donatus A, Duraffour S, Ehichioya D, Ellerbrok H, Fernandez-Garcia MD, Fizet A, Fleischmann E, Gryseels S, Hermelink A, Hinzmann J, Hopf-Guevara U, Ighodalo Y, Jameson L, Kelterbaum A, Kis Z, Kloth S, Kohl C, Korva M, Kraus A, Kuisma E, Kurth A, Liedigk B, Logue CH, Lüdtke A, Maes P, McCowen J, Mély S, Mertens M, Meschi S, Meyer B, Michel J, Molkenthin P, Muñoz-Fontela C, Muth D, Newman EN, Ngabo D, Oestereich L, Okosun J, Olokor T, Omiunu R, Omomoh E, Pallasch E, Pályi B, Portmann J, Pottage T, Pratt C, Priesnitz S, Quartu S, Rappe J, Repits J, Richter M, Rudolf M, Sachse A, Schmidt KM, Schudt G, Strecker T, Thom R, Thomas S, Tobin E, Tolley H, Trautner J, Vermoesen T, Vitoriano I, Wagner M, Wolff S, Yue C, Capobianchi MR, Kretschmer B, Hall Y, Kenny JG, Rickett NY, Dudas G, Coltart CE, Kerber R, Steer D, Wright C, Senyah F, Keita S, Drury P, Diallo B, de Clerck H, Van Herp M, Sprecher A, Traore A, Diakite M, Konde MK, Koivogui L, Magassouba N, Avšič-Županc T, Nitsche A, Strasser M, Ippolito G, Becker S, Stoecker K, Gabriel M, Raoul H, Di Caro A, Wölfel R, Formenty P, Günther S. Carroll MW, et al. Nature. 2015 Aug 6;524(7563):97-101. doi: 10.1038/nature14594. Epub 2015 Jun 17. Nature. 2015. PMID: 26083749
  • [Control of Ebola hemorrhagic fever: vaccine development and our Ebola project in Sierra Leone].
    Watanabe T, Kawaoka Y. Watanabe T, et al. Uirusu. 2016;66(1):53-62. doi: 10.2222/jsv.66.53. Uirusu. 2016. PMID: 28484179 Review. Japanese.
  • An outbreak inside an epidemic: managing an infectious disease outbreak while treating Ebola.
    Horne S, Forbes K, Burns D, Tuck J. Horne S, et al. J R Army Med Corps. 2017 Feb;163(1):7-12. doi: 10.1136/jramc-2016-000684. Epub 2016 Nov 2. J R Army Med Corps. 2017. PMID: 27807010 Review.
See all similar articles

Cited by 11 articles

See all "Cited by" articles

Publication types