Background: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. The kinase inhibitor nintedanib specific for vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR) and fibroblast growth factor receptor (FGFR) significantly reduced the rate of decline of forced vital capacity versus placebo.
Aim: To determine the in vitro effect of nintedanib on primary human lung fibroblasts.
Methods: Fibroblasts were isolated from lungs of IPF patients and from non-fibrotic controls. We assessed the effect of VEGF, PDGF-BB and basic FGF (bFGF) ± nintedanib on: (i) expression/activation of VEGFR, PDGFR, and FGFR, (ii) cell proliferation, secretion of (iii) matrix metalloproteinases (MMP), (iv) tissue inhibitor of metalloproteinase (TIMP), and (v) collagen.
Results: IPF fibroblasts expressed higher levels of PDGFR and FGFR than controls. PDGF-BB, bFGF, and VEGF caused a pro-proliferative effect which was prevented by nintedanib. Nintedanib enhanced the expression of pro-MMP-2, and inhibited the expression of TIMP-2. Transforming growth factor-beta-induced secretion of collagens was inhibited by nintedanib.
Conclusion: Our data demonstrate a significant anti-fibrotic effect of nintedanib in IPF fibroblasts. This effect consists of the drug's anti-proliferative capacity, and on its effect on the extracellular matrix, the degradation of which seems to be enhanced.