Analysis of the relative contributions of the nuclear Overhauser interproton distance restraints and the empirical energy function in the calculation of oligonucleotide structures using restrained molecular dynamics

Biochemistry. 1989 Jul 11;28(14):5978-84. doi: 10.1021/bi00440a039.


The relative contributions of the interproton distance restraints derived from nuclear Overhauser enhancement measurements and of the empirical energy function in the determination of oligonucleotide structures by restrained molecular dynamics are investigated. The calculations are based on 102 intraresidue and 126 interresidue interproton distance restraints derived from short mixing time two-dimensional nuclear Overhauser enhancement data on the dodecamer 5'd(CGCGPATTCGCG)2 [Clore, G.M., Oschkinat, H., McLaughlin, L.W., Benseler, F., Scalfi Happ, C., Happ, E., & Gronenborn, A.M. (1988) Biochemistry 27, 4185-4197]. Eight interproton distance restraint lists were made up with errors ranging from -0.1/+0.2 to -1.2/+1.3 A for r less than 2.5 A and from -0.2/+0.3 to -1.3/+1.4 A for r greater than or equal to 2.5 A. These restraints were incorporated into the total energy function of the system in the form of square-well potentials with force constants set sufficiently high to ensure that the deviations between calculated distances and experimental restraints were very small (average interproton distance rms deviation of less than 0.06 A). For each data set, six calculations were carried out, three starting from classical A-DNA and three from classical B-DNA. The results show that structural changes occurring during the course of restrained molecular dynamics and the degree of structural convergence are determined by the interproton distance restraints. All the structures display similar small deviations from idealized geometry and have the same values for the nonbonding energy terms comprising van der Waals, electrostatic, and hydrogen-bonding components. Thus, the function of the empirical energy function is to maintain near perfect stereochemistry and nonbonded interactions.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Magnetic Resonance Spectroscopy
  • Molecular Structure
  • Nucleic Acid Conformation
  • Oligodeoxyribonucleotides*
  • Protons
  • Thermodynamics


  • Oligodeoxyribonucleotides
  • Protons