An "enigmatic" L-carnosine (β-alanyl-L-histidine)? Cell proliferative activity as a fundamental property of a natural dipeptide inherent to traditional antioxidant, anti-aging biological activities: balancing and a hormonally correct agent, novel patented oral therapy dosage formulation for mobility, skeletal muscle power and functional performance, hypothalamic-pituitary- brain relationship in health, aging and stress studies
- PMID: 25524476
- DOI: 10.2174/1872211309666141218145408
An "enigmatic" L-carnosine (β-alanyl-L-histidine)? Cell proliferative activity as a fundamental property of a natural dipeptide inherent to traditional antioxidant, anti-aging biological activities: balancing and a hormonally correct agent, novel patented oral therapy dosage formulation for mobility, skeletal muscle power and functional performance, hypothalamic-pituitary- brain relationship in health, aging and stress studies
Abstract
Hypothalamic releasing and inhibiting hormones are major neuroendocrine regulators of human body metabolism being driven directly to the anterior pituitary gland via hypothalamic-hypophyseal portal veins. The alternative physiological or therapeutic interventions utilizing the pharmaco-nutritional boost of imidazole-containing dipeptides (non-hydrolized oral form of carnosine, carcinine, N-acetylcarnosine lubricant eye drops) can maintain health, enhance physical exercise performance and prevent ageing. Carnosine (β-alanyl-L-histidine) is synthesized in mammalian skeletal muscle. There is an evidence that the release of carnosine from the skeletal muscle sarcomeres moieties during physical exercise affects autonomic neurotransmission and physiological functions. Carnosine released from skeletal muscle during exercise acts as a powerful afferent physiological signaling stimulus for hypothalamus, may be transported into the hypothalamic tuberomammillary nucleus (TMN), specifically to TMN-histamine neurons and hydrolyzed herewith via activities of carnosine-degrading enzyme (carnosinase 2) localized in situ. Through the colocalized enzymatic activity of Histidine decarboxylase in the histaminergic neurons, the resulting L-histidine may subsequently be converted into histamine, which could be responsible for the effects of carnosine on neurotransmission and physiological function. Carnosine and its imidazole-containing dipeptide derivatives are renowned for their anti-aging, antioxidant, membrane protective, metal ion chelating, buffering, anti-glycation/ transglycating activities used to prevent and treat a spectrum of age-related and metabolic diseases, such as neurodegenerative disease, sight threatening eye diseases, Diabetes mellitus and its complications, cancers and other disorders due to their wide spectrum biological activities. The precursor of carnosine (and related imidazole containing compounds) synthesis in skeletal muscles beta-alanine is used as the oral supplement by athletes to achieve the fine sporting art results due to the buffering activities of carnosine and its related imidazole- containing compounds which contribute to the maintenance of the acid-base balance in the acting muscles. This work originally emphasizes that overall data indicate the signaling activities of carnosine in skeletal and cardiac muscles switching on the mechanisms of exercise-induced telomere protection and point to the stress response and growth/cellular proliferation pathways as high-priority candidates for the ongoing studies and therapeutic concepts. The therapeutic interventions utilizing the specific oral formulation (Can-C Plus), timing dosing and pharmaco-nutritional boost of imidazolecontaining dipeptides can maintain health, enhance physical exercise performance and prevent aging. The patented therapeutic concept protects the existence of the interesting physiological major activities, better controls and therapeutic treatments for aging/age-related disorders (including age-related loss of muscle mass and muscle function) using carnosine dipeptide for cellular rejuvenation and manipulating telomeres and enzyme telomerase activity that may reduce some of the physiological declines that accompany aging.
Similar articles
-
Biochemical, Biomedical and Metabolic Aspects of Imidazole-Containing Dipeptides with the Inherent Complexity to Neurodegenerative Diseases and Various States of Mental Well-Being: A Challenging Correction and Neurotherapeutic Pharmaceutical Biotechnology for Treating Cognitive Deficits, Depression and Intellectual Disabilities.Curr Pharm Biotechnol. 2014;15(8):738-78. doi: 10.2174/1389201015666140827104918. Curr Pharm Biotechnol. 2014. PMID: 25158972 Review.
-
Telomere Attrition in Human Lens Epithelial Cells Associated with Oxidative Stress Provide a New Therapeutic Target for the Treatment, Dissolving and Prevention of Cataract with N-Acetylcarnosine Lubricant Eye Drops. Kinetic, Pharmacological and Activity-Dependent Separation of Therapeutic Targeting: Transcorneal Penetration and Delivery of L-Carnosine in the Aqueous Humor and Hormone-Like Hypothalamic Antiaging Effects of the Instilled Ophthalmic Drug Through a Safe Eye Medication Technique.Recent Pat Drug Deliv Formul. 2016;10(2):82-129. doi: 10.2174/1872211309666150618104657. Recent Pat Drug Deliv Formul. 2016. PMID: 26084629 Review.
-
State of the art clinical efficacy and safety evaluation of N-acetylcarnosine dipeptide ophthalmic prodrug. Principles for the delivery, self-bioactivation, molecular targets and interaction with a highly evolved histidyl-hydrazide structure in the treatment and therapeutic management of a group of sight-threatening eye diseases.Curr Clin Pharmacol. 2009 Jan;4(1):4-37. doi: 10.2174/157488409787236074. Curr Clin Pharmacol. 2009. PMID: 19149498 Clinical Trial.
-
Patenting strategies, the authentication US fiscal methodology, discovery and development of imidazole-containing peptide compounds with free-radical scavenging and transglycating properties acting as targeted drug regulators and homeostatic agents with diverse therapeutic activities for pharmacy of diabetes and metabolic diseases.Expert Opin Ther Pat. 2015;25(11):1319-39. doi: 10.1517/13543776.2015.1064899. Epub 2015 Sep 15. Expert Opin Ther Pat. 2015. Retraction in: Expert Opin Ther Pat. 2017 Dec;27(12):1363. doi: 10.1080/13543776.2017.1294367. PMID: 26372004 Retracted.
-
Hormone-brain-aging relationships, broadly reactive with imidazole-containing dipeptides: targeting of telomere attrition as an aging biomarker and dynamic telomerase activity flirting.J Basic Clin Physiol Pharmacol. 2015 Mar;26(2):115-40. doi: 10.1515/jbcpp-2014-0045. J Basic Clin Physiol Pharmacol. 2015. PMID: 25153587 Review.
Cited by
-
Histidine-Bound Dinitrosyl Iron Complexes: Antioxidant and Antiradical Properties.Int J Mol Sci. 2023 Dec 7;24(24):17236. doi: 10.3390/ijms242417236. Int J Mol Sci. 2023. PMID: 38139065 Free PMC article.
-
Ionophore Ability of Carnosine and Its Trehalose Conjugate Assists Copper Signal in Triggering Brain-Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Activation In Vitro.Int J Mol Sci. 2021 Dec 16;22(24):13504. doi: 10.3390/ijms222413504. Int J Mol Sci. 2021. PMID: 34948299 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
