Kinome sequencing reveals RET G691S polymorphism in human neuroendocrine lung cancer cell lines

Genes Genomics. 2014 Dec;36(6):829-841. doi: 10.1007/s13258-014-0217-6.


Neuroendocrine (NE) lung tumors comprise 20-25% of all invasive lung malignancies. Currently, no effective treatments are available to cure these tumors, and it is necessary to identify a molecular alteration(s) that characterizes NE lung tumor cells. We aimed to identify a kinase mutation(s) associated with NE lung tumor by screening 517 kinase-encoding genes in human lung cancer cell lines. Our next-generation sequencing analysis of six NE lung tumor cell lines (four small cell lung cancer lines and two non-small cell lung cancer lines) and three non-NE lung tumor lines revealed various kinase mutations, including a nonsynonymous mutation in the proto-oncogene RET (c.2071G>A; p.G691S). Further evaluation of the RET polymorphism in total 15 lung cancer cell lines by capillary sequencing suggested that the frequency of the minor allele (A-allele) in NE lung tumor lines was significantly higher than its frequency in a reference population (p = 0.0001). However, no significant difference between non-NE lung tumor lines and a reference group was detected (p = 1.0). Nevertheless, neither RET expression levels were correlated with the levels of neuron-specific enolase (NSE), a key NE marker, nor vandetanib and cabozantinib, small molecule compounds that inhibit RET, affected NSE levels in lung cancer cells. Our data suggest a potential association of G691S RET polymorphism with NE lung tumor, proposing the necessity of more thorough evaluation of this possibility. The dataset of kinase mutation profiles in this report may help choosing cell line models for study of lung cancer.

Keywords: G691S polymorphism; RET; lung cancer; neuroendocrine.