Cdk1 restrains NHEJ through phosphorylation of XRCC4-like factor Xlf1

Cell Rep. 2014 Dec 24;9(6):2011-7. doi: 10.1016/j.celrep.2014.11.044. Epub 2014 Dec 18.

Abstract

Eukaryotic cells use two principal mechanisms for repairing DNA double-strand breaks (DSBs): homologous recombination (HR) and nonhomologous end-joining (NHEJ). DSB repair pathway choice is strongly regulated during the cell cycle. Cyclin-dependent kinase 1 (Cdk1) activates HR by phosphorylation of key recombination factors. However, a mechanism for regulating the NHEJ pathway has not been established. Here, we report that Xlf1, a fission yeast XLF ortholog, is a key regulator of NHEJ activity in the cell cycle. We show that Cdk1 phosphorylates residues in the C terminus of Xlf1 over the course of the cell cycle. Mutation of these residues leads to the loss of Cdk1 phosphorylation, resulting in elevated levels of NHEJ repair in vivo. Together, these data establish that Xlf1 phosphorylation by Cdc2(Cdk1) provides a molecular mechanism for downregulation of NHEJ in fission yeast and indicates that XLF is a key regulator of end-joining processes in eukaryotic organisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CDC2 Protein Kinase / genetics
  • CDC2 Protein Kinase / metabolism*
  • DNA End-Joining Repair*
  • Down-Regulation
  • Homologous Recombination
  • Phosphorylation
  • Protein Structure, Tertiary
  • Schizosaccharomyces / genetics
  • Schizosaccharomyces / metabolism*
  • Schizosaccharomyces pombe Proteins / chemistry
  • Schizosaccharomyces pombe Proteins / genetics
  • Schizosaccharomyces pombe Proteins / metabolism*

Substances

  • Schizosaccharomyces pombe Proteins
  • XLF1 protein, S pombe
  • CDC2 Protein Kinase