Caffeine as a lead compound for the design of therapeutic agents for the treatment of Parkinson's disease

Curr Med Chem. 2015;22(8):975-88. doi: 10.2174/0929867322666141215160015.


The current pharmacological therapies for the treatment of Parkinson's disease are mostly inadequate and recent, improved therapeutic agents are required. Two important molecular targets for the design of anti-parkinsonian therapeutic compounds are the adenosine A2A receptor and the enzyme, monoamine oxidase (MAO) B. Adenosine A2A receptor antagonists are a relatively new class of anti-parkinsonian agents, which act by potentiating dopamine-mediated neurotransmission via dopamine D2 receptors. MAO-B inhibitors are established therapy of Parkinson's disease and inhibit the MAO-B-catalysed metabolism of dopamine in the brain. This conserves reduced dopamine stores and extends the action of dopamine. A2A antagonism and MAO-B inhibition have also been associated with neuroprotective effects, further establishing roles for these classes of compounds in Parkinson's disease. Interestingly, caffeine, a known adenosine receptor antagonist, has been recently considered as a lead compound for the design and discovery of A2A antagonists and MAO-B inhibitors. This review summarizes the recent efforts to discover caffeinederived MAO-B inhibitors. The design of caffeine-derived A2A antagonists has been extensively reviewed previously. The prospect of discovering dual-target-directed compounds that act at both targets is also evaluated. Compounds that block the activation and function of both A2A receptors and MAO-B may have a synergistic effect in the treatment of patients with Parkinson's disease.

Publication types

  • Review

MeSH terms

  • Adenosine A2 Receptor Antagonists / pharmacology
  • Adenosine A2 Receptor Antagonists / therapeutic use*
  • Animals
  • Caffeine / analogs & derivatives*
  • Caffeine / pharmacology
  • Caffeine / therapeutic use*
  • Drug Design
  • Humans
  • Monoamine Oxidase / metabolism
  • Monoamine Oxidase Inhibitors / pharmacology
  • Monoamine Oxidase Inhibitors / therapeutic use*
  • Parkinson Disease / drug therapy*
  • Parkinson Disease / metabolism


  • Adenosine A2 Receptor Antagonists
  • Monoamine Oxidase Inhibitors
  • Caffeine
  • Monoamine Oxidase